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Motivation - Random field paradigm

Motivation

 11° E  12° E  13° E  14° E  15° E  16° E  17° E  18° E

 56° N  

 57° N  

 58° N  

 59° N  
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14

A few issues in stochastic modeling in space (and time)
Marginal distribution, Dependence structure, (Dynamics)
Computational cost
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Motivation - Random field paradigm

Gaussian based Models

Usual Method of Choice:
Gaussian based model (mean + covariance structure) works for Gaussian and
non-Gaussian data:
Gaussian assumption is usually a working hypothesis
Non Gaussian data - Gaussian model + marginal transformation (Gaussian
anamorphosis)
Pros: Simple to use, explicit expressions, closed under linear transformations and
conditioning. Can generate mass at zero by truncation.
Cons: Transformation operates on marginal distribution, difficult to see what happens to
joint densities, computational complexity
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Motivation - Random field paradigm

Alternative Models

Few in closed-form models: Wishart, gamma, t-Student, Laplace
Integrals (e.g. moving averages ) with non-Gaussian noise, e.g. heavy-tailed
Laplace random field moving averages

Even if closed-form models are possible computational complexity of processing
joint pdf’s for large data is really prohibited.
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Proposed Methodology

Effective distribution model (EDM)

The core idea of EDM, is that we can simulate realizations of missing values at
prediction sites s̃p ∈ P , conditionally on the data x := x(s), while preserving the
spatial correlations with the nearby locations, using the univariate pdf:

feff (yp;ψ(s̃p;ψ1, . . .ψN )) .
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Proposed Methodology

Schematic Description of the methodology

Choose the functional form of feff(·) - univariate effective pdf - based on
either empirical knowledge or from fitting the sample data.
Fit the model to the data at each one of the N sample sites in the set S -
which produces the parameters vectors ψ1, . . . ψN .

Predict the value of the parameter vector at the prediction site s̃p :

ψ∗
p = ψ(s̃p;ψ1, . . .ψN )

using stochastic methods - like krigging
using deterministic methods - like kernel regression

Simulate yp from the conditional pdf feff (yp;ψ(s̃p;ψ1, . . .ψN )) , using a
simulation method that further imposes spatial correlations between the
prediction site and its neighbors.
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Simulation scheme

Simulation algorithm - basic ideas

The conditional pdfs feff(yp,ψ
∗
p) incorporate the local spatial variation of ψ∗

p .
However, this does not ensure spatial continuity of the reconstructed
precipitation field at neighboring locations.
We propose two simulation algorithms with this intend.
Spatial correlations are imposed by selecting the level of the effective cdf at
target sites based on probability levels at neighboring sampling sites.
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Simulation scheme

Simulation algorithm 1: “Frozen” Sample (FS)

Step 1 For s̃p ∈ P (Prediction set), define a bounded region B(s̃p) which includes
the nb nearest neighbors of s̃p that lie in S (default nb = 5).

Step 2 Randomly select one element from B(s̃p) that corresponds, say, to the
sampling location sk, where k ∈ {1, . . . , N}.

Step 3 Determine the probability level at location sk by means of
p(sk) = Feff(xk; ψ̂k), where ψ̂k = ψ(sk), and Feff is the cdf of feff.

Step 4 Assign the probability level p(sk) to the location s̃p, i.e., p = p(sk).
Step 5 Assign to the grid location s̃p the value yp = F−1

eff (p; ψ̂p).
Step 6 Repeat for all prediction points.
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Simulation scheme

Sequential Updating Algorithm

The Sequential Updating (SU) algorithm uses a continuously updated “sample
set” which incorporates the prediction sites where the algorithm has already
assigned values.
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Precipitation modeling

Compound Poisson gamma (CPG) distribution

X =

Nc∑
i=1

Γi, Nc ∼ Poisson(λ), Γi ∼ iid gamma(α, θ)

Mixed type with an atom at zero λ : P(X = 0) = e−λ = P(Nc = 0) - dry
conditions;
CPG belongs to the family of Tweedie distributions; estimation is by mle
(numerically) and is implemented in the Tweedie package in R.
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Precipitation modeling

CPG density plots
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Precipitation modeling

CPG vs gamma

We prefer CPG because of :
mixed type distribution. The zeros that correspond to dry conditions are
produced naturally;
the total precipitation amount during a day, is generated as a sum of
precipitation amounts during Nc individual rain events Γi which in principle,
and depending on the resolution of the available data, can have different
shape and rate;
has in general fatter tails than the gamma distribution.

Anastassia Baxevani, Joint work with D. Hristopulos and C. Andreou (University of Cyprus)Effective probability distribution approximation for non-stationary non Gaussian random fields - An application to precipitationDecember 2, 2025 13 / 24



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Model Validation

Reanalysis daily precipitation data - South Sweden
https://downloads.psl.noaa.gov/Datasets/cpc_global_precip/
Climate Prediction Center (CPC) at 70 nodes with spatial resolution
≈ 0.5o ≈ 55.65 km) from 1/1/1979 -31/12/2019

 11° E  12° E  13° E  14° E  15° E  16° E  17° E  18° E

 56° N  

 57° N  

 58° N  

 59° N  
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Model Validation

Precipitation model - application

Our approach leads to a spatial precipitation model indexed by day.
Each point in the sampling set is assigned a pdf which represents the daily
precipitation for that point for the specific day of the year.
Distribution is estimated by the precipitation records for the specific day over
the entire period of observation.
Estimated parameters are location dependent.
No need for temporal or spatial stationarity assumption.
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Model Validation

Some Statistics for 2nd July

Mean StD Skewness Kurtosis Maximum
1.9 mm 4.2 mm 6.1 55.9 55.7 mm

11 12 13 14 15 16 17 1856
.0

56
.5

57
.0

57
.5

58
.0

58
.5

59
.0

Percentage of dry days (02/07)

0.2

0.3

0.4

0.5

0.6
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Model Validation

Simulation Scheme

1 At locations with data, denoted by ” ◦ ” estimate ψ(s) for July 2 using the
precipitation records for this day over all available years.

2 Predict ψ∗
p at the remaining 25 locations denoted by ” ⋆ ” locations

kernel regression with quadratic and Gaussian kernel
krigging equations with Matérn covariance

3 Using EDM we generate 100 realizations conditionally on the precipitation
values at the sampling locations for each year (i.e., 40× 100 simulations per
prediction location).

4 The CPG-EDM prediction at each site for a specific year is given by the
median over the 100 realizations that correspond to that year.

5 We assess the performance of the CPG-EDM approach by means of the
validation scores.
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Model Validation

Continuous scores
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Model Validation

Categoricals scores

Categorical scores
Index Description Formula
BIAS Bias score hits+false alarms

hits+misses

POD Probability of detection hits
hits+misses

FAR False alarm ratio false alarms
hits+false alarms

TS Threat score hits
hits+misses+false alarms

Table: Descriptions and definitions for categorical scores. Hits refers to the number of
cases the predictions matched the observations; false alarms refers to the number of false
precipitation predictions; misses counts the failures to predict a precipitation event.
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Model Validation

Categoricals scores
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Model Validation

Field reconstruction
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Model Validation

Field reconstruction
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Model Validation

Field reconstruction - statistics

MAE MSE RMSE MAPE Pearson R-squared
Quadratic 1.063 1.85 1.36 76.65 0.754 0.568
Ordinary 1.091 1.771 1.331 74.698 0.764 0.583

Table: Comparison of the generated precipitation amounts using quadratic kernel and
ordinary krigging compared to the baseline 2 July 2014.
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Model Validation

Conclusions-Remarks

The EDM approach decomposes the joint problem to local densities and thus is suitable for
large data sets and non-Gaussian and non-stationary data.
By coupling the effective pdf method with computationally efficient conditional simulation
algorithms, we obtained promising results in reconstructing spatial data gaps in sets with
complex dependencies (examples not shown here).
The CPG distribution allows modeling intermittence and consider multiple rain events per
day.
The EDM-based algorithms were used for the reconstruction of spatial data:
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