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Multisite Rainfall Weather Generators
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S = 37 stations, ECA&D

Objective: Build a stochastic weather
generator

For the multisite rain occurrence
Y (t) = (Y

(t)
1 , . . . ,Y

(t)
S )

Then for precipitation intensity
R(t) = (R

(t)
1 , . . . ,R

(t)
S )

→ Reproduce the spatial-temporal
structure of the data.

In particular large scales dry/wet
episodes
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Multisite HMM based model

Rain occurrence Y (t) = (Y
(t)
1 , . . . ,Y

(t)
S ) ∈ {0, 1}S - Unobserved weather type

Z (t) ∈ {1, . . . ,K}

Y (t−1)

Z (t−1)

Y (t)

Z (t)

Y (t+1)

Z (t+1)

Qt−1Qt−2 Qt Qt+1

Hidden

Observed
fZ (t−1),t−1 fZ (t),t fZ (t+1),t+1

Conditional independence (Zucchini et al. 1991, Gobet et al. 2024)

– Stations must be ”far apart enough”: 10 stations in the paper

+ Correlations between stations are captured by the weather types Z
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How to generate binary correlated variables

λs

X ∼ N (0,Cθ) : latent ∀s,Ys =

{
1 if Xs ≤ Φ−1(λs)

0 else

Parameters : λi = P(Yi = 1) for i ∈ 1, . . . ,S and θ the parameters of the latent
covariance.

Associated distribution

f (y , θ) =

∫ b1

a1

· · ·
∫ bS

aS

fX ((x1, ..., xS))d(x1, ..., xS)

With ai = −∞ if Yi = 1,Φ−1(λi ) else, bi = ∞ if Yi = 0,Φ−1(λi ) else
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Multisite model

Y (t−1)

Z (t−1)

Y (t)

Z (t)

Y (t+1)

Z (t+1)

Qt−1Qt−2 Qt Qt+1

Hidden

Observed
fZ (t−1),t−1 fZ (t),t fZ (t+1),t+1

Marginal Memory

+ λs

X ∼ N (0,Cθ) : latent ∀s,Ys =

{
1 if Xs ≤ Φ−1(λs)

0 else

+ No restriction on the stations distance

± Correlations between stations are captured by the weather types Z and Cθ

- The emission is more complicated !
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HMM : Maximum likelihood estimation

Hidden states → Expectation-Maximization (EM) algorithm

Seasonal parameters θ(t)

!! High dimensional integrals

→ Tricks make the problem computable

Example: Maximize composite pairwise likelihood
∑

pairsi,j wij log L((yi , yj); θ) instead of
full likelihood log L((y1, . . . , yS); θ) during the M step of the EM algorithm.
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Adding the Rain intensity : marginals

For now : we get Z (t) the state, (Y
(t)
1 , ...,Y

(t)
S ) the occurence of rain.

What about the amount of rain (R
(t)
1 , ...,R

(t)
S ) ?

Generalized Pareto Distribution

GPD models exceedances over a threshold u:

H(r ;σ, ξ) =

{
1
σ

(
1 + ξr

σ

)−1/ξ−1
, ξ ̸= 0,

1
σ
e−r/σ, ξ = 0

Extended Generalized Pareto Distribution, Naveau et al. (2016),Gamet et al. (2022)

EGPD models exceedances over a low threshold u:

K(r ;σ, ξ) = G(H(r ;σ, ξ))

Need appropriate G : [0, 1] → [0, 1] : Truncated Beta of Gamet et al. (2022)

Only need to model the very low values separately
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Adding the Rain Intensity: Spatio-temporal Link

Occurrence probability and truncation bounds.
Let

Φ(T (s, n)) = 1− λ
(n)

z(n),s,y
(n−1)
s

= P
(
Y (n)

s = 1 | Z (n) = z (n), Y (n−1)
s = y (n−1)

s

)
,

which defines the rain/no–rain threshold T (s, n).

Y (n)
s = 0 : ℓ(s, n) = −∞, u(s, n) = T (s, n),

Y (n)
s = 1 : ℓ(s, n) = T (s, n), u(s, n) = ∞.

Latent truncated Gaussian field :

XR(·, n) ∼ TMVN(0, CR(·), ℓ, u) ,
= XR(s, n) is marginally standard Gaussian.

Back to rain intensity (like Obakrim et al, 2025) :

Given XR(s, n) and Y
(n)
s ,

R(n)
s =


(
F

(tn)

z(n),s

)−1(
ΦT (s,n)(XR(s, n))

)
, Y

(n)
s = 1,

0, Y
(n)
s = 0.
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Rain occurence - Parameters fitted from real data
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Rain occurence - Most likely sequence of states :
interpretability

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2023

2005

2003

1999

1976

Cognot Caroline 11 / 16



Introduction Multisite Rainfall SWG Results on real data Conclusion

Rain occurence - Spatiotemporal evaluation

Rain Occurrence Rate (ROR) =

∑
s∈S Y

(t)
s

|S|
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Rain occurence - Dry spells

Dry spell of Rain Occurrence Rate (ROR) Pℓ = P(RORt < 0.2, ...,RORt+ℓ < 0.2)
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Entire generator with rain intensity
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Figure: Monthly observed and simulated rainfall quantiles, for periodic EGPD parameters

Cycle of seasonality well-represented

More complexity can be needed for locations like NiceCognot Caroline 14 / 16
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Entire generator with rain intensity

Make the generation of hidden state Z (t), then Y
(t)
s |Z (t), then some rain quantity

R
(t)
s |Z (t),Y

(t)
s and the final rain amount is NOT JUST R × Y .

Spatial continuity ratio (Wilks, 1998)

For two sites sk and sℓ, the spatial continuity ratio is

CR(sk , sℓ) =
E
[
Rsℓ,t > 0

∣∣Rsk ,t = 0
]

E
[
Rsℓ,t > 0

∣∣Rsk ,t > 0
] .
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0.0 0.5 1.0

S
im

u
la

ti
on

s

0.0

0.5

1.0

RMSE = 0.076

Observations
0.0 0.5 1.0

0.0

0.5

1.0

RMSE = 0.033

Observations
0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

RMSE = 0.124

Pairs with distance < 800 km
Correlations Tail index q = 0.95 CR
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Conclusion

What has been done

Seasonal Multisite rain occurrence model with hidden weather regimes

No restriction on the distance between stations

Evaluation of rain occurence with the spatiotemporal indicator ROR

Added rain intensity ”a posteriori” with marginals depending on the state, common
covariance structure

What is left to do

Add other weather variables

Thank you ! Any questions ?
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