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Introduction

Multisite Rainfall Weather Generators

5° .30 1° 50 7 9°
S = 37 stations, ECA&D

Cognot Caroline

Objective: Build a stochastic weather
generator

@ For the multisite rain occurrence

YO = (v, v

@ Then for precipitation intensity

R® = (R ... RY)

786 7W — Reproduce the spatial-temporal

structure of the data.

@ In particular large scales dry/wet

episodes
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Multisite Rainfall SWG
®00000

Multisite HMM based model

Rain occurrence Y = (Yl(t), o Ys(t)) € {0,1}° - Unobserved weather type
ZOWe{1,...,K}

Q2 /\ Qs m Q /\ Qe
Z(t=1) V44l Z(t+1)

\[/ \TJ Hidden

fe,e1 f0.0 .00 Opserved
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Multisite HMM based model

Rain occurrence Y = (Yl(t)7 R Yét)) e {0, 1}5 - Unobserved weather type
zZWe{1,...,K}

Q2 /\ Q1 m Q /\ Qe
Z(t=1) V44l Z(t+1)

\\}J Hidden

foe1, 1 fr0¢ fze 01 Observed

Conditional independence (Zucchini et al. 1991, Gobet et al. 2024)

S
P (Y =yl|Z= Z(t)) = fu0.(0) =[] (A z0, 60 + 1 = y)A = Az0.,.0))

s=1

With A = P(YD =120 = k) fori € 1,...,8
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Multisite HMM based model

Rain occurrence Y = (Yl(t)7 R Yét)) e {0, 1}5 - Unobserved weather type
zZWe{1,...,K}

Qs /\ Q1 /\ @ Qi1
Z(e=1 y4%l Z(e+1)

\7/

2 fr0e

)

Hidden

fzen 1 Observed

e

Marginal Memory

y(-1) y(®) y(t+1)

C

Conditional independence (Zucchini et al. 1991, Gobet et al. 2024)

P (Y =ylZ= Z(t)a = = yt_1> - z(r>,t(}’) =
5]
H (ys)\z(‘),t,s,yst_l + (1 - ys)(l - AZ(t),t,s,y§_1)>
s=1

With A, ;e = PV =120 =k, vV =y ) foriel,...,S

sl
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Multisite Rainfall SWG
®00000

Multisite HMM based model

Rain occurrence Y = (Yl(t), o Ys(t)) € {0,1}° - Unobserved weather type
ZOWe{1,...,K}

Qs /\ Q1 /\ @
Z(1 z® Z(t+1)

\7/

Qe

)

Hidden

1)y fz0. /K’ el Opserved
w Marginal Memory w ()

Conditional independence (Zucchini et al. 1991, Gobet et al. 2024)

— Stations must be "far apart enough”: 10 stations in the paper

+ Correlations between stations are captured by the weather types Z
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Multisite Rainfall SWG
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How to generate binary correlated variables

Binary field

X < 10
X ~ N(0, Cy) : latent Vs, Y, = 1 if X <o7H(\)
0 else
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Multisite Rainfall SWG
O®@0000

How to generate binary correlated variables

Gaussian field Binary field

X< (A,
X ~ N(0, Cy) : latent Vs, Y, = 1 0f X <o)
0 else

Parameters : A\ =P(Y; =1) fori€1,...,S and 6 the parameters of the latent
covariance.
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Multisite Rainfall SWG
O®@0000

How to generate binary correlated variables

Gaussian field Binary field

—)
: I LY o
1 if X <o~ 1(/\)
0 else

X ~N(0,GCp) : latent Vs, Ys = {

Parameters : A\ =P(Y; =1) fori€1,...,S and 6 the parameters of the latent
covariance.

Associated distribution

f(y,0) = /:1 . ../a:S x((x1y ey x5))d(x1, ooy Xs)

With a; = —oco if Y; = 1,071()\) else, bj = oo if Y; = 0,d72()\;) else
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Multisite Rainfall SWG
[e]e] le]e]e]

Multisite model

Q2 Qe Q Qs

7 Z6m
\TJ Hidden

- foe

fr0) 001

ooy Y Merginal Memory

- if X, < @7 (A
ey X ~ N(0,Cy) ¢ latent Vs, v, = 4L X < 07H)
0 else

+ No restriction on the stations distance

+ Correlations between stations are captured by the weather types Z and Cy

- The emission is more complicated !
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Multisite Rainfall SWG
O00e00

HMM : Maximum likelihood estimation

@ Hidden states — Expectation-Maximization (EM) algorithm
@ Seasonal parameters 6(t)

Il High dimensional integrals
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HMM : Maximum likelihood estimation

@ Hidden states — Expectation-Maximization (EM) algorithm
@ Seasonal parameters 6(t)

Il High dimensional integrals

— Tricks make the problem computable

Example: Maximize composite pairwise likelihood >_ . ;- wilog L((yi, y;); 0) instead of
full likelihood log L((y1, . .., ¥s);8) during the M step of the EM algorithm.
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Multisite Rainfall SWG
O00e00

HMM : Maximum likelihood estimation

@ Hidden states — Expectation-Maximization (EM) algorithm
@ Seasonal parameters 6(t)

Il High dimensional integrals

— Tricks make the problem computable

Example: Maximize composite pairwise likelihood >_ . ;- wilog L((yi, y;); 0) instead of
full likelihood log L((y1, . .., ¥s);8) during the M step of the EM algorithm.

All pairs where dist < 0.3 distmax

7/16
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Multisite Rainfall SWG
[e]e]e]e] Je]

Adding the Rain intensity : marginals

For now : we get Z(*) the state, (Yl(t), . Yg)) the occurence of rain.

What about the amount of rain (R{t), e Rg)) ?
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Adding the Rain intensity : marginals
For now : we get Z(*) the state, (Yl(t), . Yg)) the occurence of rain.

What about the amount of rain (R{t), e Rg)) ?

Generalized Pareto Distribution

GPD models exceedances over a threshold u:

La+&)7V ez,
%efr/o, §:0

H(r;a’g) = {
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Multisite Rainfall SWG

[e]e]e]e] Je]

Adding the Rain intensity : marginals

For now : we get Z() the state, (Yl(t)7 ey Yét)) the occurence of rain.

What about the amount of rain (R{t), s Rg)) ?

Generalized Pareto Distribution

GPD models exceedances over a large threshold u:

. P ez
H(I‘,O',g):{%er/a, §:0

@ Drawback: needs a large threshold u
@ Bulk of the distribution must be modeled separately
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Multisite Rainfall SWG
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Adding the Rain intensity : marginals

For now : we get Z(*) the state, (Yl(t), . Yg)) the occurence of rain.

What about the amount of rain (R{t), veny Rg)) ?

Generalized Pareto Distribution

GPD models exceedances over a large threshold u:

1 (14 &ryTVet 0
H(r;a,€)={ie(—ja”) ’ 27_—&0’

bl

Extended Generalized Pareto Distribution, Naveau et al. (2016),Gamet et al. (2022)

EGPD models exceedances over a low threshold u:

K(r;0,&) = G(H(r;0,¢))
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Multisite Rainfall SWG

[e]e]e]e] Je]

Adding the Rain intensity : marginals
For now : we get Z(*) the state, (Yl(t), . Yg)) the occurence of rain.

What about the amount of rain (R{t), veny Rg)) ?

Generalized Pareto Distribution

GPD models exceedances over a large threshold u:

1 ery—1/é-1
o= {10297 (2o

Extended Generalized Pareto Distribution, Naveau et al. (2016),Gamet et al. (2022)

EGPD models exceedances over a low threshold u:

K(r;0,&) = G(H(r;0,¢))

@ Need appropriate G : [0,1] — [0,1] : Truncated Beta of Gamet et al. (2022)

@ Only need to model the very low values separately
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Multisite Rainfall SWG
O0000e

Adding the Rain Intensity: Spatio-temporal Link

Occurrence probability and truncation bounds.
Let

O(T(s,m) =1-A0 () =B(YV =1]Z0 =2, v = 7))

which defines the rain/no-rain threshold T (s, n).
y{"=0:

L(s,n) = —oo, u(s,n)=T(s,n),
vy =1:

L(s,n) = T(s,n), u(s,n)=oc.
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Adding the Rain Intensity: Spatio-temporal Link

Occurrence probability and truncation bounds.
Let

OT(s,m) = 1= Ay =BV =120 =20, v = ),
which defines the rain/no-rain threshold T (s, n).

Yi"=0: {(s,n) = —oo, u(s,n)= T(s,n),

Yin=1: {(s,n) = T(s,n), u(s,n)=oco.

Latent truncated Gaussian field :

Xr(:,n) ~ TMVN(0, Cr(-), £,u),
= Xg(s, n) is marginally standard Gaussian.
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Adding the Rain Intensity: Spatio-temporal Link

Occurrence probability and truncation bounds.
Let

OT(s,m) = 1= Ay =BV =120 =20, v = ),

which defines the rain/no-rain threshold T (s, n).
Yi"=0: {(s,n) = —oo, u(s,n)= T(s,n),
Yin=1: {(s,n) = T(s,n), u(s,n)=oco.

Latent truncated Gaussian field :

Xr(:,n) ~ TMVN(0, Cr(-), £,u),
= Xg(s, n) is marginally standard Gaussian.

Back to rain intensity (like Obakrim et al, 2025) :
Given Xg(s,n) and Yi7,

-1
R _ (F z(fn"f,s) (76 (Xr(s,m)), V&7 =1,
0, v —o.
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Results on real data
@00000

Rain occurence - Parameters fitted from real data

0)

k YE"A]

KYU =RV =1] 72

P(Y"=1]Z
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Results on real data
O@0000

Rain occurence - Most likely sequence of states :
interpretability

1976

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
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Results on real data
00@000

Rain occurence - Spatiotemporal evaluation

DJF

Rain Occurrence Rate (ROR) =
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Results on real data
000e00

Rain occurence - Dry spells

Dry spell of Rain Occurrence Rate (ROR) P, = P(ROR: < 0.2,..., ROR:1, < 0.2)

DJF MAM
100
=
=107
Z
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Results on real data
000080

Entire generator with rain intensity
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Figure: Monthly observed and simulated rainfall quantiles, for periodic EGPD parameters

Cycle of seasonality well-represented
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Results on real data
[e]e]e]e]o] }

Entire generator with rain intensity

Make the generation of hidden state Z(), then Ys(t)|Z(t), then some rain quantity
R Z® v and the final rain amount is NOT JUST R x Y.

Spatial continuity ratio (Wilks, 1998)

For two sites sk and s¢, the spatial continuity ratio is

E[Rs,.e > 0| Rs.t = 0]

CR(Sk Se) =
9 o
E[Rs,.e > 0| Re.t > 0]
* Correlations e Tail index ¢=0.95 . ) » CR
1.0 L 10 L 15 Pairs with distance < 800 kn:
L
P Lo *s =t
E b, ' HE
£ 05 % T 0.5 J
El o >
g A .
@a . ) 0.5
.
0.0 RMSE = 0.076 004 RMSE = 0.033 , RMSE = 0.124
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Conclusion

Conclusion

What has been done
@ Seasonal Multisite rain occurrence model with hidden weather regimes
@ No restriction on the distance between stations
@ Evaluation of rain occurence with the spatiotemporal indicator ROR

@ Added rain intensity "a posteriori” with marginals depending on the state, common
covariance structure
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@ Add other weather variables
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Conclusion

Conclusion

What has been done
@ Seasonal Multisite rain occurrence model with hidden weather regimes
@ No restriction on the distance between stations
@ Evaluation of rain occurence with the spatiotemporal indicator ROR

@ Added rain intensity "a posteriori” with marginals depending on the state, common
covariance structure

What is left to do
@ Add other weather variables

Thank you ! Any questions ?
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