Stochastic rainfall generation over complex topography

Lionel Benoit*1

 1 INRAE - BioSP - INRAE - France

Abstract

Orographic precipitation is ubiquitous on tropical islands with high elevation topography where it generates spatially heterogeneous rainfall patterns. As an example, the mean annual rainfall ranges from 200 mm/year to more than 7000 mm/year on the Island of Hawai'i (10432 km2).

Strong orographic effects break down the stationarity of rain statistics and require non-stationary stochastic rainfall models. In this presentation I will therefore introduce a stochastic model specially designed for non-stationary daily rainfall fields. The model is based on a fully non-stationary trans-Gaussian approach, and allows all model parameters to be location-dependent. This results in a very flexible spatial model for daily rainfall, in which both rainfall intensity and rainfall spatial dependencies can be non-stationary.

The model is tested on the Island of Hawai'i and shows good performance in generating stochastic rainfall fields honoring rainfall statistics observed by a network of 79 rain gauges. A particular emphasis is put on spatial statistics, and on the ability of the model to simulate realistic spatial patterns of daily rainfall.

Keywords: Nonstationary spatial model, daily rainfall, orographic precipitation

^{*}Speaker