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Motivating example

Fire Weather Index (FWI) computed on 947 spatial locations in Portugal

® Spatial dependence
® |nterest in extreme and non-extreme observations

Fire Weather Index
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Statistical modelling of extreme values

Block maxima Peaks over threshold

!
Precipitation (mm)

Precipitation (mm)
0 10 20 30 40 50 60
0 10 20 30 40 50 60

T T T T I T T T T T
0 1000 2000 3000 4000 0 1000 2000 3000 4000

Day Day

® Models for block maxima (annual maxima)

® Models for tail behaviour by fixing a high threshold (exceedances)



Modelling of spatial extremes
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e Study the risk of joint occurrence of extreme events
= Spatial aggregation of risk

® Applied interest in climatic and environmental sciences

® Notion of extremal dependence = coefficient x




Asymptotic Dependence/Independence

Let Y1 ~ F and Y5 ~ F be random variables with support (0, +00). Defining
x(y)=Pri>y|Y>>y),
bivariate tail dependence coefficient:

x = lim x(y).

Y—00

*0<x<1
e If x>0, Y7 and Y; are Asymptotically Dependent (AD)
e If y =0, Y7 and Y3 are Asymptotically Independent (Al)



Gaussian processes

W ={W(s)} ~GP
® Parametrized by a correlation function p(-)
® Easy to simulate from
Limitations:

® Symmetry, light tails

® Weak tail dependence: always Al unless p(s1,s2) =1



Gaussian location and scale mixtures

If W {(s) is a Gaussian process:
Gaussian scale mixtures (Huser et al., 2017; Engelke et al., 2019)
X(s)=RxW(s), R >0 indep. of W(s)

® Can be heavy-tailed, R can induce asymptotic dependence (AD)

Gaussian location mixtures (Krupskii et al., 2018)

X(s)=S+W(s), S indep.of W(s)

® Can also be asymmetric



Gaussian location-scale mixtures

Our general framework:

X(s)=S+RxW(s), R>0,S indep. of W(s)

More flexibility in model construction

S can induce asymmetry in the tails
Can be heavy-tailed and AD

Example: S ~ Asymmetric Laplace(\1, \2), R? ~ Exp(1/2)
Asymmetric, tail dependence controlled by (A1, A2): both tails can be Al or AD



Gaussian location-scale mixture (example)

W (s) is Gaussian = Al in both tails
X(s) =S+ R x W(s) is AD in the upper tail, Al in the lower tail
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New method for inference



Inference

X(s) =S+ RxW(s)
In few, well-known cases, closed-form densities are available, e.g.:

® X(s) = Rx W(s), with R=1/VG, G ~ Gamma(v/2,v/2)

= (X(s0),...,X(Sm)) ~ Multivariate Student’s t with v d.f.

® X(s) =R x W(s), with R? ~ Exp(1/2)
= (X(s0),...,X(sm)) ~ Multivariate Laplace

In general, we don't know the multivariate distribution of X (s)
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New solutions for inference

X(s) =S+ RxW(s)

Problem: Latent variables S and R to be integrated out
—> High numerical cost of likelihood evaluations

Two steps solution:

@ Transform the data to estimate the parameters of W (s)
® Estimate the parameters of S and R
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Step 1

We apply the following data transformations:
® |ocation mixtures: X(s) =S + W(s),

Z =(X(s1) — X(50),- -, X (8m) — X(50))
=(W(s1) — W(so),---, W(sm) — Wi(so))

® Scale mixtures: X(s) = R W(s)

2= (S x0) = (o))
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Step 1

7 _ (X($2) — X (50) X(sm) — X(80)>
X(s1) — X(s0)’ 7 X(s1) — X(s0)
_ (W(SQ) — W(So) W(Sm) - W(So))
Wi(s1) = Wi(so) " W(s1) — Wi(so)

We can get the analytical distribution of Z
= use it to estimate the parameters of p(-) of the Gaussian process W (s)
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Step 2

We still need to estimate the parameters of S and R.

Let
- 1 m - 1 m

The distribution of
X=S4+RW

depends now only on the parameters of S and R.
We can estimate them by minimizing a goodness-of-fit criterion for the edf of X.
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Simulation study

X (s) = R W(s) ~ Multivariate Student's t with v d.f. (known distribution):
Classical MLE for X (s) vs Two-steps estimate for W (s) and R

Range param. (¢) Smooth. param. (1) R par.—d.f. (v)
60- oo . 0.56- '
8 55- . 0.52-
£ . Method
E H. § & full ML
= 50 # -T-' 0.48- E3 two steps
I
45- 0.44-
A B C D A B C D
Configuration
A: m = 50, n = 100; B: m = 100, n = 500;

C: m = 200, n = 1000; D: m = 400, n = 2000.
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Marginal modelling

Scale-location mixture X (s) is a copula model for the spatial dependence

Data observed in a marginal scale Y'(s)

Marginally, X(s) ~ G and Y (s) ~ F":

X(s) = GTH{F(Y(s)}

Flexible F' to model both the bulk and the tail of the data
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Marginal modelling: EGPD

Extended Generalized Pareto Distribution (EGPD) from Naveau et al. (2016):

Fitted EGPD
y g _ .
Py =B {e ()} S AT
7 . y
® H(-) is the cdf of the GPD 5
® B(u) =pu™ + (1 - p)uk2 g:
® Avoids threshold selection g | | | ‘
0 20 40 60
FwI
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Conditional simulation
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Conditional simulation of Gaussian location-scale mixtures

Algorithm

Goal: simulate X3 | (X3 = x7) in a Gaussian location-scale mixture X = (X7, X2)
Inputs: Conditioning components x7; Gaussian variance-covariance matrix X

@ Simulate (R, S) from the conditional distribution of (R,S) | X;

frsx)(rs,x1)  frswy)(r,s, (x1—s)/r)r™™

e a1
< fr(r)fs(s)fw, ((x1 = s)/r)r™™
through a random walk Metropolis-Hastings algorithm;
® Compute W; = (X; — S)/R;
© Simulate Wy from Wy [ Wy ~ N (p9)1, ¥gp1);
® Compute X9 = S5 + R Wo.
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Conditional simulation - example (1)

Observed FWI; (i = July 1, 2000)

0<FWI<15
15<FWI<18
18<FWI<21
21<FWI<24
24 <FWI <27
27 <FWI<30
30<FWI<33
33<FWI<36
FWI > 36
Viseu district
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Conditional

simulation - example (1)

0<FWI<15
15<FWI<18
18<FwWl<21
21<FWI<24
24 <FWI<27
27 <FWI<30
30<FWI<33
33 <FWI<36
FWI > 36

Observed FWI; (Viseu)

Predicted FWI; (Viseu)
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Ongoing work...

From an observed high value (u = 0.99), conditional simulation in the other locations

Predicted u;

® u>099

= use as input in models that simulate wildfire propagation

Predicted FWI;
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Backup slide: conditional simulation

Plot in the

uniform scale = no marginal non-stationarity effect

Observed y; (Viseu) Predicted u; (Viseu)

0<u<0.2
0.2<u<0.25
0.25<u<0.3
0.3<u<0.35
0.35<u<04
0.4<u<045
0.45<u<0.5
0.5<u<0.55
u>0.55
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