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Motivating example

Fire Weather Index (FWI) computed on 947 spatial locations in Portugal

• Spatial dependence

• Interest in extreme and non-extreme observations

July 4, 2008

0 ≤ FWI ≤ 18
18 < FWI ≤ 24
24 < FWI ≤ 30
30 < FWI ≤ 36
FWI > 36

July 5, 2008

Fire Weather Index

July 6, 2008
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Statistical modelling of extreme values
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• Models for block maxima (annual maxima)

• Models for tail behaviour by fixing a high threshold (exceedances)
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Modelling of spatial extremes
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• Study the risk of joint occurrence of extreme events

=⇒ Spatial aggregation of risk

• Applied interest in climatic and environmental sciences

• Notion of extremal dependence =⇒ coefficient χ
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Asymptotic Dependence/Independence

Let Y1 ∼ F and Y2 ∼ F be random variables with support (0,+∞). Defining

χ(y) = Pr (Y1 > y | Y2 > y) ,

bivariate tail dependence coefficient:

χ = lim
y→∞

χ(y).

• 0 ≤ χ ≤ 1

• If χ > 0, Y1 and Y2 are Asymptotically Dependent (AD)

• If χ = 0, Y1 and Y2 are Asymptotically Independent (AI)
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Gaussian processes

W = {W (s)} ∼ GP

• Parametrized by a correlation function ρ(·)
• Easy to simulate from

Limitations:

• Symmetry, light tails

• Weak tail dependence: always AI unless ρ(s1, s2) = 1
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Gaussian location and scale mixtures

If W (s) is a Gaussian process:

Gaussian scale mixtures (Huser et al., 2017; Engelke et al., 2019)

X(s) = R×W (s), R ≥ 0 indep. of W (s)

• Can be heavy-tailed, R can induce asymptotic dependence (AD)

Gaussian location mixtures (Krupskii et al., 2018)

X(s) = S +W (s), S indep. of W (s)

• Can also be asymmetric
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Gaussian location-scale mixtures

Our general framework:

X(s) = S +R×W (s), R ≥ 0, S indep. of W (s)

• More flexibility in model construction

• S can induce asymmetry in the tails

• Can be heavy-tailed and AD

• Example: S ∼ Asymmetric Laplace(λ1, λ2), R
2 ∼ Exp(1/2)

Asymmetric, tail dependence controlled by (λ1, λ2): both tails can be AI or AD
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Gaussian location-scale mixture (example)

W (s) is Gaussian =⇒ AI in both tails

X(s) = S +R×W (s) is AD in the upper tail, AI in the lower tail
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New method for inference
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Inference

X(s) = S +R×W (s)

In few, well-known cases, closed-form densities are available, e.g.:

• X(s) = R×W (s), with R = 1/
√
G, G ∼ Gamma(ν/2, ν/2)

=⇒ (X(s0), . . . , X(sm)) ∼ Multivariate Student’s t with ν d.f.

• X(s) = R×W (s), with R2 ∼ Exp(1/2)

=⇒ (X(s0), . . . , X(sm)) ∼ Multivariate Laplace

In general, we don’t know the multivariate distribution of X(s)
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New solutions for inference

X(s) = S +R×W (s)

Problem: Latent variables S and R to be integrated out

=⇒ High numerical cost of likelihood evaluations

Two steps solution:

1 Transform the data to estimate the parameters of W (s)

2 Estimate the parameters of S and R
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Step 1

We apply the following data transformations:

• Location mixtures: X(s) = S +W (s),

Z =(X(s1)−X(s0), . . . , X(sm)−X(s0))

= (W (s1)−W (s0), . . . ,W (sm)−W (s0))

• Scale mixtures: X(s) = R W (s)

Z =

(
X(s1)

X(s0)
, . . . ,

X(sm)

X(s0)

)
=

(
W (s1)

W (s0)
, . . . ,

W (sm)

W (s0)

)
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Step 1

• Location-scale mixtures: X(s) = S +R W (s)

Z =

(
X(s2)−X(s0)

X(s1)−X(s0)
, . . . ,

X(sm)−X(s0)

X(s1)−X(s0)

)
=

(
W (s2)−W (s0)

W (s1)−W (s0)
, . . . ,

W (sm)−W (s0)

W (s1)−W (s0)

)

We can get the analytical distribution of Z

=⇒ use it to estimate the parameters of ρ(·) of the Gaussian process W (s)
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Step 2

We still need to estimate the parameters of S and R.

Let

X̄ =
1

m+ 1

m∑
j=0

X(sj) and W̄ =
1

m+ 1

m∑
j=0

W (sj).

The distribution of

X̄ = S +R W̄

depends now only on the parameters of S and R.

We can estimate them by minimizing a goodness-of-fit criterion for the edf of X̄.
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Simulation study

X(s) = R W (s) ∼ Multivariate Student’s t with ν d.f. (known distribution):

Classical MLE for X(s) vs Two-steps estimate for W (s) and R

Range param. (φ) Smooth. param. (η) R par.−d.f. (ν)
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A: m = 50, n = 100; B: m = 100, n = 500;

C: m = 200, n = 1000; D: m = 400, n = 2000.
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Marginal modelling

• Scale-location mixture X(s) is a copula model for the spatial dependence

• Data observed in a marginal scale Y (s)

• Marginally, X(s) ∼ G and Y (s) ∼ F :

X(s) = G−1 {F (Y (s))}

• Flexible F to model both the bulk and the tail of the data
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Marginal modelling: EGPD

Extended Generalized Pareto Distribution (EGPD) from Naveau et al. (2016):

F (y) = B
{
Hξ

( y
σ

)}

• Hξ(·) is the cdf of the GPD

• B(u) = p uk1 + (1− p)uk2

• Avoids threshold selection

Fitted EGPD
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Conditional simulation
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Conditional simulation of Gaussian location-scale mixtures

Algorithm

Goal: simulate X2 | (X1 = x1) in a Gaussian location-scale mixture X = (X1,X2)

Inputs: Conditioning components x1; Gaussian variance-covariance matrix Σ

1 Simulate (R,S) from the conditional distribution of (R,S) | X1

f(R,S)|X1=x1
(r, s) =

f(R,S,X1)(r, s,x1)

fX1(x1)
=

f(R,S,W1)(r, s, (x1 − s)/r)r−m

fX1(x1)

∝fR(r)fS(s)fW1((x1 − s)/r)r−m

through a random walk Metropolis-Hastings algorithm;

2 Compute W1 = (X1 − S)/R;

3 Simulate W2 from W2 | W1 ∼ N(µ2|1,Σ2|1);

4 Compute X2 = S +R W2.
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Conditional simulation - example (I)

0 ≤ FWI ≤ 15
15 < FWI ≤ 18
18 < FWI ≤ 21
21 < FWI ≤ 24
24 < FWI ≤ 27
27 < FWI ≤ 30
30 < FWI ≤ 33
33 < FWI ≤ 36
FWI > 36
Viseu district

Observed FWIi (i = July 1, 2000)
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Conditional simulation - example (II)

0 ≤ FWI ≤ 15
15 < FWI ≤ 18
18 < FWI ≤ 21
21 < FWI ≤ 24
24 < FWI ≤ 27
27 < FWI ≤ 30
30 < FWI ≤ 33
33 < FWI ≤ 36
FWI > 36

Observed FWIi (Viseu) Predicted FWIi (Viseu)
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Ongoing work...

From an observed high value (u = 0.99), conditional simulation in the other locations

Predicted ui

0 ≤ u ≤ 0.75
0.75 < u ≤ 0.8
0.8 < u ≤ 0.85
0.85 < u ≤ 0.9
0.9 < u ≤ 0.95
0.95 < u ≤ 0.97
0.97 < u ≤ 0.98
0.98 < u ≤ 0.99
u > 0.99

Predicted FWIi

0 ≤ FWI ≤ 33
33 < FWI ≤ 36
36 < FWI ≤ 39
39 < FWI ≤ 42
42 < FWI ≤ 45
45 < FWI ≤ 48
48 < FWI ≤ 51
51 < FWI ≤ 54
FWI > 54

=⇒ use as input in models that simulate wildfire propagation
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Backup slide: conditional simulation

Plot in the uniform scale =⇒ no marginal non-stationarity effect

0 ≤ u ≤ 0.2
0.2 < u ≤ 0.25
0.25 < u ≤ 0.3
0.3 < u ≤ 0.35
0.35 < u ≤ 0.4
0.4 < u ≤ 0.45
0.45 < u ≤ 0.5
0.5 < u ≤ 0.55
u > 0.55

Observed ui (Viseu) Predicted ui (Viseu)
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