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GENERAL CONTEXT - MONTPELLIER, FRANCE

» Mediterranean events, localized rainfall

» Urban area, flood risks

MONTPELLIER
.

Floods in Montpellier, September 2022 and August
2015 (Midi Libre)
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RAIN GAUGES NETWORK - OMSEV!

LT T ——

€coLe o, ecrev

cines 0
. DUARCHITECTURE  1¢® ® e,

e

POLYTECH
® o

um3s.

.
cHy um 25

BRIVES
.

HYPROPOLIS

S = {20 rain gauges} C R?> and T C Ry

Study area: Verdanson water catchment

Source: Urban observatory of HydroScience
Montpellier (HSM)?

Time period: [Sept.2019, Jan.2025]
Temporal resolution: 5 minutes

Spatial resolution: 77 m to 2259 m

!Observ. Montpellierain et au Sud de I'Eau dans la Ville
2FINAUD-GUYOT et al., 2023
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MODELING UNIVARIATE PRECIPITATION
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> Generalized Pareto Distribution (GPD)'

X|X>u~ He withé€R,0>0.

GPD(¢&,0,u)

1PickanDs 111, 1975
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MODELING UNIVARIATE PRECIPITATION
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> Extended Generalized Pareto Distribution (EGPD)?

X ~ G(Hg) with G(x) =x", k>0

——
EGPD(¢,0,k)

2NAVEAU et al., 2016
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EGPD riTTING
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EGPD fitting for two rain gauges, CEFE (left) and IEM (right) with left-censoring and 95% Cl
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SPATIO-TEMPORAL DEPENDENCE MODELING

Precipitation

Univariate

Dependence
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SPATIO-TEMPORAL DEPENDENCE MEASURES

Rainfall random field: X = {X,., (s,t) € Sx T}

Let As C Ri and A1 C Ry be sets of spatial and temporal lags respectively.
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SPATIO-TEMPORAL DEPENDENCE MEASURES

Rainfall random field: X = {X,., (s,t) € Sx T}

Let As C Ri and A1 C Ry be sets of spatial and temporal lags respectively.

Variogram (MATHERON, 1963)

1
’Y(h7 T) = Evar(Xs,t - Xs+h,t+-r)

e Quantifies variability

e Higher v(h,7) — weaker dependence

hels, 7 €Nt
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SPATIO-TEMPORAL DEPENDENCE MEASURES

Rainfall random field: X = {X,., (s,t) € Sx T}

Let As C Ri and A1 C Ry be sets of spatial and temporal lags respectively.

Variogram (MATHERON, 1963)
1
’Y(h, T) = Evar(Xs,t - Xs+h,t+-r)

e Quantifies variability

e Higher v(h,7) — weaker dependence

h e As, 7€ A, X, uniform margins.

Extremogram (DAvIS and MIKOSCH, 2009)

X(h7T) - Ilm P(Xs*,t > q | Xs*+h,t+‘r > q)
q—1

e Measures tail dependence

e Higher x(h,T) — stronger dependence
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Rainfall at CNRS (mm)
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Rainfall at Polytech (mm)
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r-PARETO PROCESS

Definition (de FONDEVILLE and DAVISON, 2018)
Forall s € S and t € T, a risk function r(X) = Xs; ¢,

1 d . Wt —Ws, t0 —v(s—sp,t—tg)
U Xsye | Xegtg > U= Yor with Yo = Ry Vot ™ Weoo=7(e=50.t700)

where (So, to) is a space-time location, u is a high threshold, Rs: ~ Pareto(1), W ¢ is a Gaussian
process.

20

Rainfall (mm)
1

o 20 a0 80 80 100 120

Time

Random simulation
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DEPENDENCE MODELING

Spatio-temporal extremogram with a Brown-Resnick dependence

Let h € As and 7 € Ay. We have

x(h,7) =2 (1 0 ( 2(h, r)))

with ¢ the std normal c.d.f. and « the variogram of W.
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DEPENDENCE MODELING

Spatio-temporal extremogram with a Brown-Resnick dependence

Let h € As and 7 € Ay. We have

x(h,7) =2 (1 0 ( 2(h, r)))

with ¢ the std normal c.d.f. and « the variogram of W.

Separable model: Fractional Brownian motion with additive separability.

h7T «@ [e%
AT g + Bofele

with 0 < ag,an <2, ,31,,32 > 0.
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DEPENDENCE MODELING

Separable model
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DEPENDENCE MODELING

Separable model
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DEPENDENCE MODELING

Separable model

([ ] ([ ] ([ ] ([ ]

([ ] ([ ] ([ ] ([ ]

([ ] ([ ] ([ ] ([ ]
t+2

10/24



DEPENDENCE MODELING

Separable model Non-separable model
[ J [ J [ J [ J [ J [ J [ J [ J
#4E2
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t+1
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t+2 /
. v

10/24



DEPENDENCE MODELING

Non-separable model
Towards more realistic modeling: introduce

advection V to relax separability ° ° ° °
’VL(th) :’Y(h*TV,T) t+2
[ J [ J [} [ J
1 [e3 [e%

= E’W_(h,T)Zﬁﬂ‘h—TVH L+ Bo|T|*? t+1
[ J [} [ J [ J

» Parameters: @ = (b1, B2, a1, a2, V) " ﬂ
[ J [ J [ J [ J
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ALL RAINFALL EVENTS

Time

r-Pareto process:
Each episode is characterized
by (so, to) for which Xs,,¢ > u

Space
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SELECT EPISODES

Time

Episode selection:

Only episodes separated by
e spatial distance > dmin
N e temporal gap > Thin
d?Y‘HV‘I

A

= reduces dependence
between selected episodes € £.

Tmin v

Space
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SELECT EPISODES

Time

Episode selection:

Only episodes separated by
e spatial distance > dmin
e temporal gap > Tmin

= reduces dependence
between selected episodes € £.

Space
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COUNT JOINT EXCEEDANCES PER EPISODE

Time

>

I Joint exceedances

Hx

ke(S, t) = 1{X50,[0>u, Xs,e>u}r
with (s, t) € N(h, 7)

ke(s, t) € [0, 1] ~ Bernoulli(xe(h, 7))

&

Space

with N(h,7) ={(s,t) €S X T |s—so=h, t —to =7}
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JOINT EXCEEDANCES

Time

I Total joint exceedances:

ke(s, t) € [0, 1] ~ Bernoulli(xe(h, 7))

= Kh,T = Z Z ke(S, t)

ec€ (s,t)eN(h,T)

x>

Composite Binomial likelihood:
B(Ntot(h)7 XG(h, 7—))

Space

with N(h,7) ={(s,t) €eSX T |s—so=h,t—to =7}
and Nit(h) = [E] X #{s € S |s—so = h}
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PARAMETER ESTIMATION

Bernoulli contributions (large u):
ke(S, t) = l{Xso,z0>U, Xs,t>u}s (57 t) € N(h7 T)?

each treated as
ke(s, t) ~ Bernoulli(xe(h, T))

Composite Binomial likelihood:

B(Niot(h), xo(h;7)),  Net(h) = |E|#{s € S : s —so = h}.

Composite log-likelihood
le(@) > > > ks, t)logxe(h,7) + (1 — ke(s, t)) log(1 — xe(h, 7).

ec& (h,T)ENs XN (s,t)EN(h,T)

» Optimization via maximization of £¢(©).
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VALIDATION: CONSTANT ADVECTION

Estimated values
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50 simulations, 500 replicates, 25 sites, 30 time steps
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EPISODE-WISE ADVECTION TO GLOBAL MODEL

v
v lobal model
global mode X
Vemp — . c RN><2 vhnal =mnm Sign(vcmp) ® |chp|®"72 c RN><2
: = ~ -
vV unified transformation = 7 to estimate

one component = one episode

Estimated values
Estimated values

2

s : =

== =

B: o 3 ve
Parameters Parameters

50 simulations, 500 replicates, 25 sites, 30 time steps
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EPISODE-WISE ADVECTION TO GLOBAL MODEL

v
ve lobal model
global mode .
Vemp — ] c RN><2 vhnal = Sign(vemp) ® |Vemp|©"72 c RN><2
: ~ ~" -
vV unified transformation = 7 to estimate
one component = one episode

Challenge:

OMSEYV data = limited information for advection v

Approach:

Fusion COMEPHORE-OMSEV — more reliable advection
Advection classes — class-dependent 7 = (11, 12)

COMEPHORE pixels
Météo France
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ADVECTION ESTIMATION ON REAL DATA

For one episode (COMEPHORE):

COMEPHORE Episode 50 at 2022.05-24 01:00
‘Advection: (2.10 km/h, -1.96 kmyh)

COMEPHORE Episode 59 at 2022.05-24 02:00
‘Advection: (2.10 km/h, -1.96 km/h)

COMEPHORE Episode 59 at 2022.05-24 03:00
‘Advection: (2.10 kmyh, -1.96 km/h)

e
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VP is estimated from

to

to+ 1

rain storm barycenter displacement within a time window.

20 /24



OMSEYV RESULTS

> Advection group: relatively strong (||V\| > 2 km/h), north direction = 46 episodes
> Fixed 1 from COMEPHORE data: 71 = 0.667, 7> = 1.757 (km/h).
» OMSEV estimates (m/5 min): 61 = 0.066, 62 = 0.747, a1 = 0.480, a» = 0.691

Advection: V = (2.5, 4.33) km/h

¥(h.7)

0 5 10 15
IIhII (km)

Estimated variogram with V = (2.5,4.3) km/h
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STOCHASTIC SIMULATION OF PRECIPITATION EVENTS

Precipitation OMSEV

~ v

Stochastic precipitation generator

Univariate

Dependence
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STOCHASTIC SIMULATION OF PRECIPITATION EVENTS

9

Rainfall (mm/5min)
S

Simulations

— Median simulations

Observed episodes

25 5.0 75 10.0 125
Time step

Moderate advection intensity
1000 simulations vs 34 observations

©

o

— Observed episodes

— Simulations.

Rainfall (mm/5min)
w

, L

25 5.0 75 10.0 125
Time step

Moderate advection intensity
95% ClI

23 /24



STOCHASTIC SIMULATION OF PRECIPITATION

9
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Moderate advection intensity
1000 simulations vs 34 observations

Challenge:

o ©

Rainfall (mm/5min)
w

EVENTS

— Observed episodes

— Simulations.

, L

25 5.0 75 10.0 125
Time step

Moderate advection intensity
95% ClI

» Limited information to estimate advection: incorporate wind data

» Advection class definition still needs refinement
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CONCLUSION & OUTLOOK

Precipitation OMSEV

Additional data: COMEPHORE

+ advection class definition

\ Advection
.
Univariate g
Il
7
,
,
.
I /'
Dependence : L
I
Non-separable dependence .
Next: richer variogram (Gneiting) }
I
I
I
I
|

~ Il

Stochastic precipitation generator
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Rainfall (mm)

RAINFALL DATA - OMSEV
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ADDITIONAL DATA

Pixels of Tkm x Tkm

» Source: COMEPHORE, Météo France
> Time period: [1997,2023[
» Temporal resolution: Every hour

» Spatial resolution: 1 km?

More consistent data: Both datasets + Neural Network Downscaling.
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MODELING BOTH MODERATE AND EXTREME PRECIPITATION

Generalized Pareto Distribution —> Extended GPD!

—_a\=VE |
— [(x—u 1L JE = if €#£0, X
(5 - {1 =6 (1 (7).
e = if€=0, o
where a; = max(a,0), 0 >0, x —u >0 where G(x) =%, = >0

» Models extreme precipitation » Models moderate and extreme precipitation

» Depends on a threshold choice » Avoids a threshold choice

INAVEAU et al., 2016
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ESTIMATION OF THE SEPARABLE VARIOGRAM PARAMETERS

Case of additive separability: W(Z’T) = B1||h]|*r + Ba2|T|*?, 0<ai, @ <2, 1,8 >0

Spatio-temporal

x(b,7) =2 (1 " ( o, T)))

- ~
- ~
- ~
- ~
- ~
- ~

-7 Transformation: "~

%) =210g (¢ (1= 3x)) -

- ~
- ~
- ~

2 S

Spatial Temporal
¢ (x(h,0)) = log B1 + az logllh|| , h € As ¢(x(0,7)) =log B2 + czlog T, T € AT
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ESTIMATION OF THE SEPARABLE VARIOGRAM PARAMETERS

Case of additive separability: @ = Bi||h]|*r + Ba2|T|*?, 0<ai,as <2, 1,8, >0

Spatio-temporal

xthr)=2(1-4 (/1) )

- ~
- ~
- ~
- ~
- ~

7 Transformation: AN
) =2t0g (67 (1— 3x))

- ~
- ~
- ~

2 S

Spatial Temporal
n(x(h,0)) :=c1 + ouxn, h € As n(x(0,7)) == + coxr, T € AT

Weighted Least Squares Estimation (WLSE)

(8) = o 5 6 () — e )
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IAL DEPENDENCE ESTIMATION

Empirical spatial extremogram

For a fixed t € T and g a high quantile,

Transformation and WLSE

= Ty z =
[Np| iJ|(sj ;) ENp {Xsi,t>q’xsj,t>q}

(1) _
Xy (h,0) = . i
17 i Lixg o)
where Cj, are equifrequent distance classes and
Ny = {(Shsj) €s? | lIsi = sill € C,,} :
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Spatial variogram (h, 0) = 23| h[|*t
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TEMPORAL DEPENDENCE ESTIMATION

Empirical temporal extremogram

For a location s € S, a high quantile g and t, € {t1,...,tr}, Transformation and WLSE

1 T-T4 N
— g * *
T—7 k=1 {Xs,tk >q »Xs,thrT >q}

1 T 10
T Zk:l H{X;tk >q}

X0, ) =

%0, 7)

0.75

0.5 $ K
=

025 E% #

5 25

x(0.7)

5 10 15 20
T

$$$$¢$*¢$¢+é¢éﬁ

T (minutes)

Temporal variogram fy\(O, 7)) = 2,73’\2\7‘\“2
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NON-SEPARABILITY

Temporal lag
-0
=
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Variogram
o
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Distance

Empirical spatio-temporal variogram ~(h,7) on OMSEV data
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STOCHASTIC SIMULATION OF PRECIPITATION EVENTS

Episode 100 at site archie
25

o S
B &

L1
i
Rainfall (mm/5min)

Rainfall (mm/5min)
I
i

.0 75
25 . 75 10.0 125 Time step
Time step

High advection intensity - South direction

SimulGNIvSIOkscationEEpisedsil 00 95% Cl over 1000 simulations vs 20 observations
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