
Coding Stochastic Weather Generators:
Challenges and Perspectives

David Métivier

StochasticWeatherGenerators.jl

https://dmetivie.github.io/StochasticWeatherGenerators.jl/dev/


Introduction

1 Introduction

2 Simulation: The Need for Speed

3 Model Fitting

David Métivier Coding Stochastic Weather Generators 2



Introduction

The SWG Workflow

1 Need: Identify the application (impact study, risk assessment, etc.)

2 Existing model: Survey literature, test if available models work

3 New model: Propose modifications or new approaches

4 Data: Access and prepare weather station/gridded data

5 Code: Fitting log-likelihood and simulation

6 Validation: Check model performance against observations against other
models?

7 Publication: Write paper, share code/package?

David Métivier Coding Stochastic Weather Generators 3



Introduction

The SWG Workflow

1 Need: Identify the application (impact study, risk assessment, etc.)

2 Existing model: Survey literature, test if available models work

3 New model: Propose modifications or new approaches

4 Data: Access and prepare weather station/gridded data

5 Code: Fitting log-likelihood and simulation

6 Validation: Check model performance against observations against other
models?

7 Publication: Write paper, share code/package?

David Métivier Coding Stochastic Weather Generators 3



Introduction

The SWG Workflow

1 Need: Identify the application (impact study, risk assessment, etc.)

2 Existing model: Survey literature, test if available models work

3 New model: Propose modifications or new approaches

4 Data: Access and prepare weather station/gridded data

5 Code: Fitting log-likelihood and simulation

6 Validation: Check model performance against observations against other
models?

7 Publication: Write paper, share code/package?

David Métivier Coding Stochastic Weather Generators 3



Introduction

The SWG Workflow

1 Need: Identify the application (impact study, risk assessment, etc.)

2 Existing model: Survey literature, test if available models work

3 New model: Propose modifications or new approaches

4 Data: Access and prepare weather station/gridded data

5 Code: Fitting log-likelihood and simulation

6 Validation: Check model performance against observations against other
models?

7 Publication: Write paper, share code/package?

David Métivier Coding Stochastic Weather Generators 3



Introduction

Major challenges

1. Model fitting
How to make our model as we dream of and not transform it to make it
compatible with “the” existing package e.g. I want a seasonal model
How to optimize complex likelihood functions?

2. Fast scenario generation
One of the biggest selling points of SWGs is speed
Need a lot of long time series to explore uncertainties
How to write fast simulation code without spending months in C/C++?

3. Code accessibility & reuse
Reproducibility is great but different from (re)usability
To be user-friendly it has to be somewhat fast
Packaging research code is a lot of work (interface, testing, docs,
maintenance)

David Métivier Coding Stochastic Weather Generators 4



Introduction

Major challenges

1. Model fitting
How to make our model as we dream of and not transform it to make it
compatible with “the” existing package e.g. I want a seasonal model
How to optimize complex likelihood functions?

2. Fast scenario generation
One of the biggest selling points of SWGs is speed
Need a lot of long time series to explore uncertainties
How to write fast simulation code without spending months in C/C++?

3. Code accessibility & reuse
Reproducibility is great but different from (re)usability
To be user-friendly it has to be somewhat fast
Packaging research code is a lot of work (interface, testing, docs,
maintenance)

David Métivier Coding Stochastic Weather Generators 4



Introduction

Major challenges

1. Model fitting
How to make our model as we dream of and not transform it to make it
compatible with “the” existing package e.g. I want a seasonal model
How to optimize complex likelihood functions?

2. Fast scenario generation
One of the biggest selling points of SWGs is speed
Need a lot of long time series to explore uncertainties
How to write fast simulation code without spending months in C/C++?

3. Code accessibility & reuse
Reproducibility is great but different from (re)usability
To be user-friendly it has to be somewhat fast
Packaging research code is a lot of work (interface, testing, docs,
maintenance)

David Métivier Coding Stochastic Weather Generators 4



Introduction

The Two-Language Problem: Compiled vs. Interpreted

Who knows C++? Who wants to learn it?

Compiled languages are fast but hard to write
Interpreted languages are easy to write but slow
Interpreted languages need compiled languages under the hood
→glue code for speedDavid Métivier Coding Stochastic Weather Generators 5



Introduction

The Two-Language Problem: Scientists vs. Developers

Common workflow:
1 Prototype in R/Python

2 Rewrite some parts in C++/Fortran or Cython, Rcpp, Pytorch etc.

or use Julia "feels like Python/R but fast like C" + a lot more

David Métivier Coding Stochastic Weather Generators 6



Introduction

The Two-Language Problem: Scientists vs. Developers

Common workflow:
1 Prototype in R/Python

2 Rewrite some parts in C++/Fortran or Cython, Rcpp, Pytorch etc.

or use Julia "feels like Python/R but fast like C" + a lot more

David Métivier Coding Stochastic Weather Generators 6



Introduction

Composability in Python

Python HMM packages
hmmlearn (NumPy),
pomegranate (PyTorch),
dynamax (JAX)

Each locked to its framework
Built-in distributions only e.g.
jax.random.multivariate_normal
torch.randn
numpy.random.multivariate_normal

⇒ Each framework → isolated ecosystem = mutually incompatible

David Métivier Coding Stochastic Weather Generators 7



Introduction

Two languages packages examples

glue code

Costs of two languages:

Few people know both languages well enough to contribute

Installation/Development/Maintenance nightmare with dependencies

In Julia most packages just work together!

Each package = one domain (distributions, optim, diff equations, etc.)

Improving one package can benefit all others and users

Easier to contribute!

David Métivier Coding Stochastic Weather Generators 8



Introduction

Two languages packages examples

glue code

Costs of two languages:

Few people know both languages well enough to contribute

Installation/Development/Maintenance nightmare with dependencies

In Julia most packages just work together!

Each package = one domain (distributions, optim, diff equations, etc.)

Improving one package can benefit all others and users

Easier to contribute!

David Métivier Coding Stochastic Weather Generators 8



Simulation: The Need for Speed

1 Introduction

2 Simulation: The Need for Speed

3 Model Fitting

David Métivier Coding Stochastic Weather Generators 9



Simulation: The Need for Speed

Simulating SWG

Dynamic languages (R/Python/Matlab) require vectorization

“Life is too short to spend writing for loops” (MATLAB manual)

“Learning to use vectorized operations is a key skill in R” (R
introduction blog post)

But... Not everything can be vectorized!
Especially for SWG with temporal dependency (e.g., Markov chains, complex
dependencies)

David Métivier Coding Stochastic Weather Generators 10



Simulation: The Need for Speed

Simulating SWG

Dynamic languages (R/Python/Matlab) require vectorization

“Life is too short to spend writing for loops” (MATLAB manual)

“Learning to use vectorized operations is a key skill in R” (R
introduction blog post)

But... Not everything can be vectorized!
Especially for SWG with temporal dependency (e.g., Markov chains, complex
dependencies)

David Métivier Coding Stochastic Weather Generators 10



Simulation: The Need for Speed

Benchmark: HMM Simulation

4 hidden states
12-dimensional MvNormal
N = 104 ∼ 27 year
See the associated notebook.

Language Relative Speed
Julia (baseline) 1×
C ∼ 45×
R ∼ 700×Key takeaways:

R loops unavoidably slow (~700× slower)

C complex & error-prone: bad C can be slower than Julia!

Julia: prototype ≃ production code

David Métivier Coding Stochastic Weather Generators 11

https://dmetivie.github.io/Pluto_export/SWG_coding_challenges/Talk_DM_quarto.html


Simulation: The Need for Speed

Benchmark: HMM Simulation

4 hidden states
12-dimensional MvNormal
N = 104 ∼ 27 year
See the associated notebook.

Language Relative Speed
Julia (baseline) 1×
C ∼ 45×
R ∼ 700×Key takeaways:

R loops unavoidably slow (~700× slower)

C complex & error-prone: bad C can be slower than Julia!

Julia: prototype ≃ production code
David Métivier Coding Stochastic Weather Generators 11

https://dmetivie.github.io/Pluto_export/SWG_coding_challenges/Talk_DM_quarto.html


Model Fitting

1 Introduction

2 Simulation: The Need for Speed

3 Model Fitting

David Métivier Coding Stochastic Weather Generators 12



Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

Write down likelihood function
Instinct: Reduce to a known problem ⇒ use an existing package

+ Packages are presumably well-tested and optimized
+ Save time on implementation

But...
- Research models are most of the time somewhat new
- Need flexibility e.g. seasonality, could it be simpler to code yourself?

What is under the hood of the package you use?
When you call optim?

David Métivier Coding Stochastic Weather Generators 13



Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

Write down likelihood function
Instinct: Reduce to a known problem ⇒ use an existing package

+ Packages are presumably well-tested and optimized
+ Save time on implementation

But...
- Research models are most of the time somewhat new
- Need flexibility e.g. seasonality, could it be simpler to code yourself?

What is under the hood of the package you use?
When you call optim?

David Métivier Coding Stochastic Weather Generators 13



Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

Write down likelihood function
Instinct: Reduce to a known problem ⇒ use an existing package

+ Packages are presumably well-tested and optimized
+ Save time on implementation

But...
- Research models are most of the time somewhat new
- Need flexibility e.g. seasonality, could it be simpler to code yourself?

What is under the hood of the package you use?
When you call optim?

David Métivier Coding Stochastic Weather Generators 13



Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

Write down likelihood function
Instinct: Reduce to a known problem ⇒ use an existing package

+ Packages are presumably well-tested and optimized
+ Save time on implementation

But...
- Research models are most of the time somewhat new
- Need flexibility e.g. seasonality, could it be simpler to code yourself?

What is under the hood of the package you use?
When you call optim?

David Métivier Coding Stochastic Weather Generators 13



Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

Write down likelihood function
Instinct: Reduce to a known problem ⇒ use an existing package

+ Packages are presumably well-tested and optimized
+ Save time on implementation

But...
- Research models are most of the time somewhat new
- Need flexibility e.g. seasonality, could it be simpler to code yourself?

What is under the hood of the package you use?
When you call optim?

David Métivier Coding Stochastic Weather Generators 13



Model Fitting

Optimization methods

max
θ∈Rd

L(θ)

Gradient free → just evaluate L(θ) e.g. Nelder-Mead

Gradient based → uses ∇L(θ) e.g. (L-)BFGS, Newton’s method

1 Analytic/Symbolic: Derive formulas by hand or using computer

2 Approximate: Finite differences (f(x+ h)− f(x))/h

3 Automatic: Exact gradients, fast, scales to complex code

optim: Nelder-Mead (gradient free) or BFGS with approx. gradients.
→ Does NOT know how to AD
Julia is automatically differentiable almost everywhere natively

David Métivier Coding Stochastic Weather Generators 14



Model Fitting

Optimization methods

max
θ∈Rd

L(θ)

Gradient free → just evaluate L(θ) e.g. Nelder-Mead

Gradient based → uses ∇L(θ) e.g. (L-)BFGS, Newton’s method

1 Analytic/Symbolic: Derive formulas by hand or using computer
(Mathematica, SymPy)

- Labor-intensive, error-prone
- Expressions explode in size, doesn’t scale

2 Approximate: Finite differences (f(x+ h)− f(x))/h

3 Automatic: Exact gradients, fast, scales to complex code

optim: Nelder-Mead (gradient free) or BFGS with approx. gradients.
→ Does NOT know how to AD
Julia is automatically differentiable almost everywhere natively

David Métivier Coding Stochastic Weather Generators 14



Model Fitting

Optimization methods

max
θ∈Rd

L(θ)

Gradient free → just evaluate L(θ) e.g. Nelder-Mead

Gradient based → uses ∇L(θ) e.g. (L-)BFGS, Newton’s method

1 Analytic/Symbolic: Derive formulas by hand or using computer
2 Approximate: Finite differences (f(x+ h)− f(x))/h

- Truncation error + floating point error
- Slow: O(n) function calls for n parameters

3 Automatic: Exact gradients, fast, scales to complex code

optim: Nelder-Mead (gradient free) or BFGS with approx. gradients.
→ Does NOT know how to AD
Julia is automatically differentiable almost everywhere natively

David Métivier Coding Stochastic Weather Generators 14



Model Fitting

Optimization methods

max
θ∈Rd

L(θ)

Gradient free → just evaluate L(θ) e.g. Nelder-Mead
Gradient based → uses ∇L(θ) e.g. (L-)BFGS, Newton’s method

1 Analytic/Symbolic: Derive formulas by hand or using computer
2 Approximate: Finite differences (f(x+ h)− f(x))/h
3 Automatic: Exact gradients, fast, scales to complex code

Evaluate derivatives of functions specified by computer programs
Every computation is a sequence of elementary operations
(+,−,×, exp, log, sin, . . .)
Apply chain rule repeatedly to these operations
Get exact derivatives to machine precision!

optim: Nelder-Mead (gradient free) or BFGS with approx. gradients.
→ Does NOT know how to AD
Julia is automatically differentiable almost everywhere natively

David Métivier Coding Stochastic Weather Generators 14



Model Fitting

Optimization methods

max
θ∈Rd

L(θ)

Gradient free → just evaluate L(θ) e.g. Nelder-Mead

Gradient based → uses ∇L(θ) e.g. (L-)BFGS, Newton’s method

1 Analytic/Symbolic: Derive formulas by hand or using computer

2 Approximate: Finite differences (f(x+ h)− f(x))/h

3 Automatic: Exact gradients, fast, scales to complex code

optim: Nelder-Mead (gradient free) or BFGS with approx. gradients.
→ Does NOT know how to AD
Julia is automatically differentiable almost everywhere natively

David Métivier Coding Stochastic Weather Generators 14



Model Fitting

Example: Fitting a Spatial Model

Gaussian Random Field with Matérn covariance function:

ρMatérn(h; ν, ρ) = σ2 2
1−ν

Γ(ν)

(
h

ρ

)ν

Kν

(
h

ρ

)
where Kν is the modified Bessel function, ν is smoothness, ρ is range
Julia AD for Matérn covariance: Geoga et al. (2023)

Results for 15 locations for
i) estimating (ρ, ν) with σ = 1 and ii) estimating (ρ, ν, σ) :
See the associated notebook.

Finite differences: at least 10x slower than AD and very bad convergence
for i) and ii)
Gradient-free (Nelder-Mead): fast and good for i). Did not converge for
ii).
AD: best convergence and reasonable speed for i) and ii)

David Métivier Coding Stochastic Weather Generators 15

https://dmetivie.github.io/Pluto_export/SWG_coding_challenges/Talk_DM_quarto.html


Model Fitting

Examples: Seasonal (constant per month) Fitting

Parameters are seasonal: BUT “the” package only deals with stationary data
1 Fit each month separately ⇒ 12× YEARS fits → take the median/mean

of parameters
� high variance

2 Concatenate data for each month across years ⇒ 12 independent fits
� boundary issues

3 The “correct” likelihood is not that complicated to write:
L(θ | Y (1:N) = y(1:N)) =

∑N
n=1 log fθmonth(n)

(Y (n) = y(n) | · · · )
� Probably not in a package + one big fit

Toy example 2D-AR(2) with N = 36524 (100 years)

Y (n+1) = Amonth(n)Y
(n) +Σmonth(n)ϵ

(n), A,Σ ∈ R2×2, ϵ(n) ∼ N (0, I2)

Median (1) Concatenation (2) Total likelihood (3)
A1 7.21% 15.08% 3.96%
A2 25.45% 17.95% 8.64%
Σ 4.38% 10.48% 1.14%

→ It does make a difference!

David Métivier Coding Stochastic Weather Generators 16



Model Fitting

Examples: Seasonal (constant per month) Fitting

Parameters are seasonal: BUT “the” package only deals with stationary data
1 Fit each month separately ⇒ 12× YEARS fits → take the median/mean

of parameters
� high variance

2 Concatenate data for each month across years ⇒ 12 independent fits
� boundary issues

3 The “correct” likelihood is not that complicated to write:
L(θ | Y (1:N) = y(1:N)) =

∑N
n=1 log fθmonth(n)

(Y (n) = y(n) | · · · )
� Probably not in a package + one big fit

Toy example 2D-AR(2) with N = 36524 (100 years)

Y (n+1) = Amonth(n)Y
(n) +Σmonth(n)ϵ

(n), A,Σ ∈ R2×2, ϵ(n) ∼ N (0, I2)

Median (1) Concatenation (2) Total likelihood (3)
A1 7.21% 15.08% 3.96%
A2 25.45% 17.95% 8.64%
Σ 4.38% 10.48% 1.14%

→ It does make a difference!

David Métivier Coding Stochastic Weather Generators 16



Model Fitting

Examples: Seasonal (constant per month) Fitting

Parameters are seasonal: BUT “the” package only deals with stationary data
1 Fit each month separately ⇒ 12× YEARS fits → take the median/mean

of parameters
� high variance

2 Concatenate data for each month across years ⇒ 12 independent fits
� boundary issues

3 The “correct” likelihood is not that complicated to write:
L(θ | Y (1:N) = y(1:N)) =

∑N
n=1 log fθmonth(n)

(Y (n) = y(n) | · · · )
� Probably not in a package + one big fit

Toy example 2D-AR(2) with N = 36524 (100 years)

Y (n+1) = Amonth(n)Y
(n) +Σmonth(n)ϵ

(n), A,Σ ∈ R2×2, ϵ(n) ∼ N (0, I2)

Median (1) Concatenation (2) Total likelihood (3)
A1 7.21% 15.08% 3.96%
A2 25.45% 17.95% 8.64%
Σ 4.38% 10.48% 1.14%

→ It does make a difference!

David Métivier Coding Stochastic Weather Generators 16



Model Fitting

Examples: Seasonal (constant per month) Fitting

Parameters are seasonal: BUT “the” package only deals with stationary data
1 Fit each month separately ⇒ 12× YEARS fits → take the median/mean

of parameters
� high variance

2 Concatenate data for each month across years ⇒ 12 independent fits
� boundary issues

3 The “correct” likelihood is not that complicated to write:
L(θ | Y (1:N) = y(1:N)) =

∑N
n=1 log fθmonth(n)

(Y (n) = y(n) | · · · )
� Probably not in a package + one big fit

Toy example 2D-AR(2) with N = 36524 (100 years)

Y (n+1) = Amonth(n)Y
(n) +Σmonth(n)ϵ

(n), A,Σ ∈ R2×2, ϵ(n) ∼ N (0, I2)

Median (1) Concatenation (2) Total likelihood (3)
A1 7.21% 15.08% 3.96%
A2 25.45% 17.95% 8.64%
Σ 4.38% 10.48% 1.14%

→ It does make a difference!

David Métivier Coding Stochastic Weather Generators 16



Conclusions

Takeaways:
How to get speed: glue code or Julia?
Write your own likelihoods or use packages?
Which optimization methods (AD, Finite Different, No gradient)?

Packaging research code:
Packages should be easy to install (few dependencies)
Packages are hard to make: testing, documentation, user support (if any),
not always rewarded
Should benefit everyone, promote code reuse and collaboration

StochasticWeatherGenerators.jl
Goal Aggregate SWG models in one place for easy comparison

? How to leverage Julia ecosystem
TODO Real documentation

Thank You!

David Métivier Coding Stochastic Weather Generators 17

https://dmetivie.github.io/StochasticWeatherGenerators.jl/dev/


Conclusions

Takeaways:
How to get speed: glue code or Julia?
Write your own likelihoods or use packages?
Which optimization methods (AD, Finite Different, No gradient)?

Packaging research code:
Packages should be easy to install (few dependencies)
Packages are hard to make: testing, documentation, user support (if any),
not always rewarded
Should benefit everyone, promote code reuse and collaboration

StochasticWeatherGenerators.jl
Goal Aggregate SWG models in one place for easy comparison

? How to leverage Julia ecosystem
TODO Real documentation

Thank You!
David Métivier Coding Stochastic Weather Generators 17

https://dmetivie.github.io/StochasticWeatherGenerators.jl/dev/

	Introduction
	Simulation: The Need for Speed
	Model Fitting
	

