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Introduction

The SWG Workflow

1 Need: Identify the application (impact study, risk assessment, etc.)

2 Existing model: Survey literature, test if available models work

3 New model: Propose modifications or new approaches

4 Data: Access and prepare weather station/gridded data

5 Code: Fitting log-likelihood and simulation

6 Validation: Check model performance against observations against other
models?

7 Publication: Write paper, share code/package?

David Métivier Coding Stochastic Weather Generators 3



Introduction

The SWG Workflow

1 Need: Identify the application (impact study, risk assessment, etc.)

2 Existing model: Survey literature, test if available models work

3 New model: Propose modifications or new approaches

4 Data: Access and prepare weather station/gridded data

5 Code: Fitting log-likelihood and simulation

6 Validation: Check model performance against observations against other
models?

7 Publication: Write paper, share code/package?

David Métivier Coding Stochastic Weather Generators 3



Introduction

The SWG Workflow

1 Need: Identify the application (impact study, risk assessment, etc.)

2 Existing model: Survey literature, test if available models work

3 New model: Propose modifications or new approaches

4 Data: Access and prepare weather station/gridded data

5 Code: Fitting log-likelihood and simulation

6 Validation: Check model performance against observations against other
models?

7 Publication: Write paper, share code/package?

David Métivier Coding Stochastic Weather Generators 3



Introduction

The SWG Workflow

1 Need: Identify the application (impact study, risk assessment, etc.)

2 Existing model: Survey literature, test if available models work

3 New model: Propose modifications or new approaches

4 Data: Access and prepare weather station/gridded data

5 Code: Fitting log-likelihood and simulation

6 Validation: Check model performance against observations against other
models?

7 Publication: Write paper, share code/package?

David Métivier Coding Stochastic Weather Generators 3



Introduction

Major challenges

1. Model fitting
How to make our model as we dream of and not transform it to make it
compatible with “the” existing package e.g. I want a seasonal model
How to optimize complex likelihood functions?

2. Fast scenario generation
One of the biggest selling points of SWGs is speed
Need a lot of long time series to explore uncertainties
How to write fast simulation code without spending months in C/C++?

3. Code accessibility & reuse
Reproducibility is great but different from (re)usability
To be user-friendly it has to be somewhat fast
Packaging research code is a lot of work (interface, testing, docs,
maintenance)
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Introduction

The Two-Language Problem: Compiled vs. Interpreted

Who knows C++? Who wants to learn it?

Compiled languages are fast but hard to write
Interpreted languages are easy to write but slow
Interpreted languages need compiled languages under the hood
→glue code for speedDavid Métivier Coding Stochastic Weather Generators 5



Introduction

The Two-Language Problem: Scientists vs. Developers

Common workflow:
1 Prototype in R/Python

2 Rewrite some parts in C++/Fortran or Cython, Rcpp, Pytorch etc.

or use Julia "feels like Python/R but fast like C" + a lot more
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Introduction

Composability in Python

Python HMM packages
hmmlearn (NumPy),
pomegranate (PyTorch),
dynamax (JAX)

Each locked to its framework
Built-in distributions only e.g.
jax.random.multivariate_normal
torch.randn
numpy.random.multivariate_normal

⇒ Each framework → isolated ecosystem = mutually incompatible
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Introduction

Two languages packages examples

glue code

Costs of two languages:

Few people know both languages well enough to contribute

Installation/Development/Maintenance nightmare with dependencies

In Julia most packages just work together!

Each package = one domain (distributions, optim, diff equations, etc.)

Improving one package can benefit all others and users

Easier to contribute!
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Simulation: The Need for Speed

Simulating SWG

Dynamic languages (R/Python/Matlab) require vectorization

“Life is too short to spend writing for loops” (MATLAB manual)

“Learning to use vectorized operations is a key skill in R” (R
introduction blog post)

But... Not everything can be vectorized!
Especially for SWG with temporal dependency (e.g., Markov chains, complex
dependencies)
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Simulation: The Need for Speed

Benchmark: HMM Simulation

4 hidden states
12-dimensional MvNormal
N = 104 ∼ 27 year
See the associated notebook.

Language Relative Speed
Julia (baseline) 1×
C ∼ 45×
R ∼ 700×Key takeaways:

R loops unavoidably slow (~700× slower)

C complex & error-prone: bad C can be slower than Julia!

Julia: prototype ≃ production code
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Model Fitting
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Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

Write down likelihood function
Instinct: Reduce to a known problem ⇒ use an existing package

+ Packages are presumably well-tested and optimized
+ Save time on implementation

But...
- Research models are most of the time somewhat new
- Need flexibility e.g. seasonality, could it be simpler to code yourself?

What is under the hood of the package you use?
When you call optim?
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Model Fitting

Optimization methods

max
θ∈Rd

L(θ)

Gradient free → just evaluate L(θ) e.g. Nelder-Mead

Gradient based → uses ∇L(θ) e.g. (L-)BFGS, Newton’s method

1 Analytic/Symbolic: Derive formulas by hand or using computer

2 Approximate: Finite differences (f(x+ h)− f(x))/h

3 Automatic: Exact gradients, fast, scales to complex code

optim: Nelder-Mead (gradient free) or BFGS with approx. gradients.
→ Does NOT know how to AD
Julia is automatically differentiable almost everywhere natively
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- Expressions explode in size, doesn’t scale
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1 Analytic/Symbolic: Derive formulas by hand or using computer
2 Approximate: Finite differences (f(x+ h)− f(x))/h
3 Automatic: Exact gradients, fast, scales to complex code

Evaluate derivatives of functions specified by computer programs
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Apply chain rule repeatedly to these operations
Get exact derivatives to machine precision!
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Model Fitting

Example: Fitting a Spatial Model

Gaussian Random Field with Matérn covariance function:

ρMatérn(h; ν, ρ) = σ2 2
1−ν

Γ(ν)

(
h

ρ

)ν

Kν

(
h

ρ

)
where Kν is the modified Bessel function, ν is smoothness, ρ is range
Julia AD for Matérn covariance: Geoga et al. (2023)

Results for 15 locations for
i) estimating (ρ, ν) with σ = 1 and ii) estimating (ρ, ν, σ) :
See the associated notebook.

Finite differences: at least 10x slower than AD and very bad convergence
for i) and ii)
Gradient-free (Nelder-Mead): fast and good for i). Did not converge for
ii).
AD: best convergence and reasonable speed for i) and ii)
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Model Fitting

Examples: Seasonal (constant per month) Fitting

Parameters are seasonal: BUT “the” package only deals with stationary data
1 Fit each month separately ⇒ 12× YEARS fits → take the median/mean

of parameters
� high variance

2 Concatenate data for each month across years ⇒ 12 independent fits
� boundary issues

3 The “correct” likelihood is not that complicated to write:
L(θ | Y (1:N) = y(1:N)) =

∑N
n=1 log fθmonth(n)

(Y (n) = y(n) | · · · )
� Probably not in a package + one big fit

Toy example 2D-AR(2) with N = 36524 (100 years)

Y (n+1) = Amonth(n)Y
(n) +Σmonth(n)ϵ

(n), A,Σ ∈ R2×2, ϵ(n) ∼ N (0, I2)

Median (1) Concatenation (2) Total likelihood (3)
A1 7.21% 15.08% 3.96%
A2 25.45% 17.95% 8.64%
Σ 4.38% 10.48% 1.14%

→ It does make a difference!
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Conclusions

Takeaways:
How to get speed: glue code or Julia?
Write your own likelihoods or use packages?
Which optimization methods (AD, Finite Different, No gradient)?

Packaging research code:
Packages should be easy to install (few dependencies)
Packages are hard to make: testing, documentation, user support (if any),
not always rewarded
Should benefit everyone, promote code reuse and collaboration

StochasticWeatherGenerators.jl
Goal Aggregate SWG models in one place for easy comparison

? How to leverage Julia ecosystem
TODO Real documentation

Thank You!
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