Coding Stochastic Weather Generators:

Challenges and Perspectives

David Métivier

O

StochasticWeatherGenerators. jl

INRAZ / mistea

Mathématiques, Informatique et STatistique
science for people, life & earth pour [Environnement et figronomie

S —

https://dmetivie.github.io/StochasticWeatherGenerators.jl/dev/

Introduction

@ Introduction

e Simulation: The Need for Speed

@ Model Fitting

Introduction

The SWG Workflow

Need: Identify the application (impact study, risk assessment, etc.)

Existing model: Survey literature, test if available models work

David Métivier odi chastic Weather Generators

Introduction

The SWG Workflow

Need: Identify the application (impact study, risk assessment, etc.)
Existing model: Survey literature, test if available models work
New model: Propose modifications or new approaches

Data: Access and prepare weather station/gridded data

David Métivier odi chastic Weather Generators

Introduction

The SWG Workflow

Need: Identify the application (impact study, risk assessment, etc.)
Existing model: Survey literature, test if available models work
New model: Propose modifications or new approaches

Data: Access and prepare weather station/gridded data

Code: Fitting log-likelihood and simulation

David Métivier odi chastic Weather Generators

Introduction

The SWG Workflow

Need: Identify the application (impact study, risk assessment, etc.)
Existing model: Survey literature, test if available models work
New model: Propose modifications or new approaches

Data: Access and prepare weather station/gridded data

Code: Fitting log-likelihood and simulation

[@ Validation: Check model performance against observations against other
models?

Publication: Write paper, share code/package?

David Métivier odi stic Weather Generators

Introduction

Major challenges

1. Model fitting
o How to make our model as we dream of and not transform it to make it
compatible with “the” existing package e.g. I want a seasonal model
o How to optimize complex likelihood functions?

David Métivier 0 Weather Generators

Introduction

Major challenges

1. Model fitting
o How to make our model as we dream of and not transform it to make it
compatible with “the” existing package e.g. I want a seasonal model
o How to optimize complex likelihood functions?

2. Fast scenario generation
o One of the biggest selling points of SWGs is speed
o Need a lot of long time series to explore uncertainties
o How to write fast simulation code without spending months in C/C++?

David Métivier odi Weather Generators

Introduction

Major challenges

1. Model fitting

o How to make our model as we dream of and not transform it to make it
compatible with “the” existing package e.g. I want a seasonal model
o How to optimize complex likelihood functions?

2. Fast scenario generation

o One of the biggest selling points of SWGs is speed
o Need a lot of long time series to explore uncertainties
o How to write fast simulation code without spending months in C/C++?

3. Code accessibility & reuse

o Reproducibility is great but different from (re)usability

o To be user-friendly it has to be somewhat fast

o Packaging research code is a lot of work (interface, testing, docs,
maintenance)

David Métivier Coding Stochastic Weather Generators

Introduction

The Two-Language Problem: Compiled vs. Interpreted

[mewews]| Compied]

C, C++, Go, Fortran, Pascal
Julia (disguised as interpreted)

Python, PHP, Ruby, JavaScript

"Compiling"

Ready to Run!

"Interpreting”

Image source: quara.ccm
Who knows C++? Who wants to learn it?

o Compiled languages are fast but hard to write
o Interpreted languages are casy to write but slow
o Interpreted languages need compiled languages under the hood

hastic Weather Generators

David Métivier

Introduction

The Two-Language Problem: Scientists vs. Developers

From "My Target Audience” by Matthijs Cox

| want to
get stuff
done, fast

| don't want to
code

| want high
quality
code

Iwant to
understand
the domain

| want to code
better

Only abstract
design patterns,
please

scientists developers

4@ cET

Common workflow:
Prototype in R/Python
Rewrite some parts in C++/Fortran or Cython, Rcpp, Pytorch etc.

David Métivier

Introduction

The Two-Language Problem: Scientists vs. Developers

From "My Target Audience” by Matthijs Cox

| want to easily
bring ideas to
production

scientists

2R jux Gl

Common workflow:
Prototype in R/Python
Rewrite some parts in C++/Fortran or Cython, Rcpp, Pytorch etc.
or use Julia "feels like Python/R but fast like C" + a lot more

David Métivier 0 astic Weather Generators

i MilesCranmer@mastodon.social

The more | use Julia, the more Python and its numeric
libraries look like a Victorian-era stagecoach with jet
engines duct-taped to it, each pointing a different
direction (=mutually incompatible).

Python HMM packages

o hmmlearn (NumPy),
pomegranate (PyTorch),
dynamax (JAX)

o Each locked to its framework
o Built-in distributions only e.g.

jax.random.multivariate_normal
torch.randn
numpy .random.multivariate_normal

It's such a weird ecosystem, and makes it so much
harder for users to contribute.

Library Interfaces

Coding Stochastic Weather Generators

Introduction

Two languages packages examples

O pytorch #ubic

Languages

® Python60.1% ® C++319%
® Cuda 28% @ C14%

gllle COde ® Objective-C++ 1.1% ® CMake 06%

Other 2.1%

& GeoModels Pusic

Languages 1-3 contributors

® C536% @ R441% @ Fortran 2.3%

Costs of two languages:

o Few people know both languages well enough to contribute

o Installation/Development/Maintenance nightmare with dependencies

David Métivier

ather Gener

Introduction

Two languages packages examples

O pytorch #ubic

Languages

o Lux,jl poblc

Languages

® Python60.1% ® C++319%

gllle COde ® Cuda28% @ Cld%

@ Objective-C++ 1.1% ® CMake 06%
Other 2.1%

& GeoModels Pusic

Languages 1-3 contributors

® Julia 99.5% Other 05%

@ GeoStats.jl Puoic

Languages 21 contributors

® C536% @ R441% @ Fortran 2.3%

Costs of two languages:

® Julia 100.0%

o Few people know both languages well enough to contribute

o Installation/Development/Maintenance nightmare with dependencies

In Julia most packages just work together!

o Each package = one domain (distributions, optim, diff equations, etc.)

o Improving one package can benefit all others and users

o Easier to contribute!

David Métivier

Weather Generators

Simulation: The Need for Speed

@ Introduction

e Simulation: The Need for Speed

@ Model Fitting

Simulation: The Need for Speed

Simulating SWG

Dynamic languages (R/Python/Matlab) require vectorization
o “Life is too short to spend writing for loops” (MATLAB manual)

o “Learning to use vectorized operations is a key skill in R” (R
introduction blog post)

David Métivier odi stic Weather Generators

Simulation: The Need for Speed

Simulating SWG

Dynamic languages (R/Python/Matlab) require vectorization
o “Life is too short to spend writing for loops” (MATLAB manual)

o “Learning to use vectorized operations is a key skill in R” (R
introduction blog post)

But... Not everything can be vectorized!

Especially for SWG with temporal dependency (e.g., Markov chains, complex
dependencies)

David Métivier 0 astic Weather Generators

function rand_HMM(Q, dist, N)
Z = zeros(Int, N)
Y = zeros(N)

4 hidden states Z[1] = 1
12-dimensional MvNormal V[1] = rand(dist[z[1]1])
4 for t in 2:N
N =10% ~ 27 year Z[t] = rand(Categorical(Q[Z[t-1], :

See the associated notebook. Y[t] = rand(dist[Z[t]])
end

return Z, Y

David Métivier Coding Stochastic Weather Generators

https://dmetivie.github.io/Pluto_export/SWG_coding_challenges/Talk_DM_quarto.html

function rand_HMM(Q, dist, N)
Z = zeros(Int, N)
Y = zeros(N)

4 hidden states Z[1] = 1
12-dimensional MvNormal Y[1] = rand(dist[z[1]])
4 for t in 2:N
N =10% ~ 27 year Z[t] = rand(Categorical(Q[Z[t-1], :

See the associated notebook. Y[t] = rand(dist[Z[t]])
end

return Z, Y

Language Relative Speed

Julia (baseline) 1x

C ~ 45%
Key takeaways: R ~ 700x

o R loops unavoidably slow (~700x slower)
o C complex & error-prone: bad C can be slower than Julia!

o Julia: prototype ~ production code

David Métivier Coding Stochastic Weather Generators

https://dmetivie.github.io/Pluto_export/SWG_coding_challenges/Talk_DM_quarto.html

@ Introduction

e Simulation: The Need for Speed

@ Model Fitting

Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

David Métivier 0 ather Gener

Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

o Write down likelihood function
o Instinct: Reduce to a known problem =- use an existing package

David Métivier odi chastic Weather Generators

Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

o Write down likelihood function
o Instinct: Reduce to a known problem =- use an existing package

+ Packages are presumably well-tested and optimized
+ Save time on implementation

David Métivier odi Weather Generators

Model Fitting

Fitting SWG

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

o Write down likelihood function

o Instinct: Reduce to a known problem =- use an existing package

+ Packages are presumably well-tested and optimized

+ Save time on implementation
But...

- Research models are most of the time somewhat new

- Need flexibility e.g. seasonality, could it be simpler to code yourself?
What is under the hood of the package you use?
When you call opt im?

David Métivier odi chastic Weather Generators

Model Fitting

Goal: Fit a Gaussian or HMM-based SWG, EGPD distributions, etc.

o Write down likelihood function

° Reduce to a known problem = use an existing package
Packages are presumably well-tested and optimized
Save time on implementation

Research models are most of the time somewhat new
Need flexibility e.g. seasonality, could it be

What is under the hood of the package you use?

When you call optim?

optim(par, fn, gr = NULL, ..,

method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN",
"Brent"),

lower = -Inf, upper = Inf,

control = list(), hessian = FALSE)

David Coding Stochastic Weather Generators

Model Fitting

Optimization methods

L(#
gggg()

o Gradient free — just evaluate L(0) e.g. Nelder-Mead
o Gradient based — uses VL(#) e.g. (L-)BFGS, Newton’s method

David Métivier Coding Stochastic Weather Generators

Model Fitting

Optimization methods

Lo
ma (0)

o Gradient free — just evaluate L(#) e.g. Nelder-Mead

o Gradient based — uses VL(6) e.g. (L-)BFGS, Newton’s method
Analytic/Symbolic: Derive formulas by hand or using computer
(Mathematica, SymPy)

- Labor-intensive, error-prone
- Expressions explode in size, doesn’t scale

David Métivier odi hastic Weather Generators

Model Fitting

Optimization methods

Lo
ma (0)

o Gradient free — just evaluate L(#) e.g. Nelder-Mead
o Gradient based — uses VL(6) e.g. (L-)BFGS, Newton’s method

Analytic/Symbolic: Derive formulas by hand or using computer
Approximate: Finite differences (f(z + h) — f(z))/h

- Truncation error + floating point error
- Slow: O(n) function calls for n parameters

David Métivier oding Stochastic Weather Generators

Model Fitting

Optimization methods

L0
pas)

o Gradient free — just evaluate L(#) e.g. Nelder-Mead

o Gradient based — uses VL(0) e.g. (L-)BFGS, Newton’s method
Analytic/Symbolic: Derive formulas by hand or using computer
Approximate: Finite differences (f(x + h) — f(z))/h
Automatic: Exact gradients, fast, scales to complex code

o Evaluate derivatives of functions specified by computer programs
o Every computation is a sequence of elementary operations
(4, —, X, exp, log, sin, .. .)
o Apply chain rule repeatedly to these operations
o Get exact derivatives to machine precision!

David Métivier 0 astic Weather Generators

Model Fitting

Optimization methods

L(#
gggg()

o Gradient free — just evaluate L(0) e.g. Nelder-Mead
o Gradient based — uses VL(#) e.g. (L-)BFGS, Newton’s method

Analytic/Symbolic: Derive formulas by hand or using computer
Approximate: Finite differences (f(z + h) — f(x))/h
Automatic: Exact gradients, fast, scales to complex code

optim: Nelder-Mead (gradient free) or BEGS with approx. gradients.
— Does NOT know how to AD
Julia is automatically differentiable almost everywhere natively

David Métivier Coding Stochastic Weather Generators

Model Fitting

Example: Fitting a Spatial Model

Gaussian Random Field with Matérn covariance function:

2l=v /Y h
érn h; 5 = o? - KI/ -
pramem(hi) = 05 (p) (p)

where K, is the modified Bessel function, v is smoothness, p is range
Julia AD for Matérn covariance: Geoga et al. (2023)

Results for 15 locations for
i) estimating (p, v) with o = 1 and ii) estimating (p, v, 0) :
See the associated notebook.
o Finite differences: at least 10x slower than AD and very bad convergence
for i) and ii)
o Gradient-free (Nelder-Mead): fast and good for i). Did not converge for
ii).

o AD: best convergence and reasonable speed for i) and ii)

David Métivier Coding Stochastic Weather Generators

https://dmetivie.github.io/Pluto_export/SWG_coding_challenges/Talk_DM_quarto.html

Model Fitting

Examples: Seasonal (constant per month) Fitting

Parameters are seasonal: BUT “the” package only deals with stationary data
Fit each month separately = 12 x YEARS fits — take the median/mean
of parameters
/\ high variance

David Métivier odi hastic Weather Generators

Model Fitting

Examples: Seasonal (constant per month) Fitting

Parameters are seasonal: BUT “the” package only deals with stationary data
Fit each month separately = 12 x YEARS fits — take the median/mean
of parameters
/\ high variance
Concatenate data for each month across years = 12 independent fits
/\ boundary issues

David Métivier odi hastic Weather Generators

Model Fitting

Examples: Seasonal (constant per month) Fitting

Parameters are seasonal: BUT “the” package only deals with stationary data
Fit each month separately = 12 x YEARS fits — take the median/mean
of parameters
/\ high variance
Concatenate data for each month across years = 12 independent fits
/\ boundary issues
The “correct” likelihood is not that complicated to write:
L0 | YN — y(l:N)) = ZnNzl log f9momh(n) (Y(n) =y |-)
/\ Probably not in a package + one big fit

David Métivier Coding Stochastic Weather Generators

Model Fitting

Examples: Seasonal (constant per month) Fitting

Parameters are seasonal: BUT “the” package only deals with stationary data
Fit each month separately = 12 x YEARS fits — take the median/mean
of parameters
/\ high variance
Concatenate data for each month across years = 12 independent fits
/\ boundary issues
The “correct” likelihood is not that complicated to write:
L0 | YN — y(l:N)) = ZnNzl log f9momh(n) (Y(n) =y |-)
/\ Probably not in a package + one big fit
Toy example 2D-AR(2) with N = 36524 (100 years)

yth = 4 Y™ 43 €™, AT eR>2, M~ N(O, I
month(n) month(n)))) () 2)

Median (1) Concatenation (2) Total likelihood (3)
Aq 7.21% 15.08% 3.96% : |
| 25.45% 17.95% 8.64% — It does make a difference!
X 4.38% 10.48% 1.14%

David Métivier Coding Stochastic Weather Generators

Conclusions

Takeaways:

o How to get speed: glue code or Julia?

o Write your own likelihoods or use packages?

o Which optimization methods (AD, Finite Different, No gradient)?
Packaging research code:

o Packages should be casy to install (few dependencies)

o Packages are hard to make: testing, documentation, user support (if any),
not always rewarded

o Should benefit everyone, promote code reuse and collaboration

@ StochasticWeatherGenerators.jl lliee
Goal Aggregate SWG models in one place for easy comparison
7 How to leverage Julia ecosystem
TODO Real documentation

David Métivier 0 astic Weather Generators

https://dmetivie.github.io/StochasticWeatherGenerators.jl/dev/

Conclusions

Takeaways:

o How to get speed: glue code or Julia?

o Write your own likelihoods or use packages?

o Which optimization methods (AD, Finite Different, No gradient)?
Packaging research code:

o Packages should be casy to install (few dependencies)

o Packages are hard to make: testing, documentation, user support (if any),
not always rewarded

o Should benefit everyone, promote code reuse and collaboration

@
@ StochasticWeatherGenerators.jl 0@

Goal Aggregate SWG models in one place for easy comparison
7 How to leverage Julia ecosystem
TODO Real documentation

Thank You!

David Métivier oding astic Weather Generators

https://dmetivie.github.io/StochasticWeatherGenerators.jl/dev/

	Introduction
	Simulation: The Need for Speed
	Model Fitting
	

