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Weather generators

& A statistical model that stochastically produces
synthetic time series of meteorological variables
(precipitation, temperature, ...)

# Temporal resolution: minutes to decades

# Dimension: point scale (1D) — multiple sites —
gridded fields (2D)

& Spatial resolution: meters to hundreds of

kilometers
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Weather generators

Historical perspective
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Intense short-duration (convective) rainfall



Impacts of short-duration extreme rainfall

The heavy storm of 11th June 2018 at Lausanne

(Swiss record high of 41 mm per 10 min rainfall)




Rainfall extremes

& Planning urban drainage
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Rainfall extremes

.. Yes!

And even, if properly representing
the natural (internal) climate
variability, reliably capture yet

unseen rainfall extremes

Record-breaking rainfall: a stochastic
approach for its prediction
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Rainfall extremes

& Future IDFs are typically derived from
climate model outputs
& But climate models™ do not solve deep

convection

*Besides convection-permitting models
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Rainfall physics 101

Rainfall depends on:
# Vertical velocity — Dynamics
how much water is condensed
& Efficiency — Microphysics
how much condensation precipitates
& Moisture content — Thermodynamics

how much water is available

Saturation vapor pressure e; (hPa)

Clausius-Clapeyron relation

= 7% more moisture
per 1°C warming

= 70% more
moisture for
+10°C
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Temperature (°C)



Thermodynamic processes driving extreme rainfall intensification

On a global scale, extreme sub-daily rainfall intensity is expected to rise by about

7% per degree of warming, following the Clausius—Clapeyron relation
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Can we use temperature as a covariate in weather generator
models to better constrain and predict rainfall extremes?




The TENAX model
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The TENAX model

& We developed the TEmperature-
dependent Non-Asymptotic
statistical model for eXtreme
return levels (TENAX)

# A parsimonious non-stationary and
non-asymptotic theoretical
framework that incorporates
temperature as a covariate in a

physically consistent manner

TENAX model

Climate Climate

Precipitation and temperature

Magnitude model Temperature model
Return level estimation l

IDF present climate IDF future climate

Marra et al. HESS 2024
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TENAX: Temperature model

# The average temperatures observed
during 24 hours preceding the peak
intensities are described by a

Generalized Gaussian distribution

9(T) = 5 )expl (L52)#]
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TENAX: Precipitation event magnitude model

& We use the Weibull distribution, explicitly
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TENAX: Projections
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TENAX: evaluation (hindcast, 10-min
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Rainfall intensification over the Alpine region

& 299 climate stations from
France, Switzerland, Italy,
Germany, and Austria

& Summer convective rainfall
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Rainfall intensification over the Alpine region

1

Regional Warming Levels
of 1°C, 2°C, and 3°C
warming over the Alps

were derived

# Outputs from 17 regional

climate models of the
EURO-CORDEX project

were used for this purpose

Peleg et al. npj Clim. Atmos. Sci. 2025
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Rainfall intensification over the Alpine region
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The AWE-GEN-2d-CC model




AWE-GEN-2d in a nutshell

AWE-GEN-2d follows the philosophy of combining physical and stochastic approaches to
generate gridded climate variables in a high spatial and temporal resolution
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AWE-GEN-2d in a nutshell S ——

Storm

(1) Storm arrival process (2) Advection e

T, : Duration of rainy spells
T,4: Duration of dry spells Precip.
h : Mean intensity during rain event

Wy, : Advection directicn of rain event
W paeg © Advection speed of rain event

Cloud
cover

(3) Temporal evolution (4) Space-time evolution . :
of areal statistics of precipitation/cloud fields Am. i
s air temp.
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0.4 ,"m‘a—.,«'}‘-t—Wet Area Ratio [-] ;'ﬂ'-t i
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0.3 6 pressure
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AWE-GEN-2d in a nutshell

(5) Near-surface air temperature

Peleg et al., JAMES 2017

A flowchart of AWE-GEN-2d
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From AWE-GEN-2d to AWE-GEN-2d-CC
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From AWE-GEN-2d to AWE-GEN-2d-CC

Validation
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From AWE-GEN-2d to AWE-GEN-2d-CC

Validation Precipitation
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From AWE-GEN-2d to AWE-GEN-2d-CC

Validation
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From AWE-GEN-2d to AWE-GEN-2d-CC

Temperature-conditioned rainfall intensification

Precipitation-temperature relationship Precipitation return period
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Challenges and future developments

# Can stochastic WG provide reliable
simulations of present and future

(temperature-related) compound
climatic events?

& How can WG incorporate evolving

land-use feedbacks on local weather
statistics?

Temperature (°C)

Sauter et al.,
WCE 2024

Torell6-Sentelles et al.,

Urban Climate 2025
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Summary

# Weather generators may benefit from the explicit representation of weather-
related physical process

# For example, by adequately representing the relationship between
precipitation and temperature

# However, this integration should be implemented carefully, since these
physical processes are scale dependent in space and time and shaped by the
local climate

%é%m/ Unil.
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