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INTRODUCTION

= GENERAL FRAMEWORK

Framework of temperature & rainfall stochastic generation to feed an hydrological model
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daily temperature = climatic trend + seasonal cycle + residuals

= MARGINAL DISTRIBUTION




SSTspl.dec

= MARGINAL DISTRIBUTION

covariable SST.spl.dec

TMS (°C)

L mese

stochastic

~

deterministic

—

daily temperature = climatic trend + seasonal cycle + residuals

20 o

Summer P/

#,202°C/K SST.spl.dec (R2=0.28)

| +1.2°C 1985-2022

T
1990

T
2000

nnnnn

T
2010

T
2020

T T T T T T T
0.0 0.2 04 0.8 0.8 1.0 1.2

S5Tspldec

Climatic trend (1*4) : Sea
surface temperature covariate



L mese

deterministic stochastic

. o ~ —

daily temperature = climatic trend + seasonal cycle + residuals
? A;+ B;isin(w; xj+¢;) ifj>3;

= MARGINAL DISTRIBUTION

Summer

20 o

wi = /(365 — j;)
¢; = (wi — wji)js + ¢
Ji = TT/UJ?:_

TMS (°C)

Seasonal cycle (4) : gluing 2
sine functions

#,202°C/K SST.spl.dec (R2=0.28)
T T T T T T T

covariable SST.spl.dec 0.0 0.2 0.4 0.6 08 1.0 12

S5Tspldec

Climatic trend (1*4) : Sea
surface temperature covariate

| +1.2°c 1985-2022

SSTspl.dec

nnnnn



SSTspl.dec

= MARGINAL DISTRIBUTION

L mese

deterministic stochastic

el

A — cﬁ/\

daily temperature = climatic trend + seasonal cycle + residuals

TMS (°C)

covariable SST.spl.dec

|+1.2°C 1985-2022

T T T T
1990 2000 2010 2020

nnnnn

20 o

Summer P/

#,202°C/K SST.spl.dec (R2=0.28)

T T T T T T T
0.0 0.2 04 0.8 0.8 1.0 1.2

S5Tspldec

Climatic trend (1*4) : Sea
surface temperature covariate

TMJnot (°C)

L L e e e e L
JF M A M J J A S O N D

Seasonal cycle (4) : gluing 2
sine functions



SSTspl.dec

= MARGINAL DISTRIBUTION

covariable SST.spl.dec

L mwesm

deterministic

—

stochastic

§ S —

daily temperature = climatic trend + seasonal cycle + residuals

\ Skewed Generalized Error Distribution

TMS (°C)

|+1.2°C 1985-2022

T
1990

T
2000

nnnnn

T
2010

T
2020

y

20 o

Summer

#,202°C/K SST.spl.dec (R2=0.28)

0.6 0.8 1.0 1.2

S5Tspldec

Climatic trend (1*4) : Sea
surface temperature covariate

TMJnot (°C)

o obs | ' ‘_ : sig(eps) = 0.7

5

..43

L L e e e e L
JF M A M J J A S O N D

Seasonal cycle (4) : gluing 2
sine functions

u’

‘u,’
O_f
,-},
A

fsaep(u)

B 2
~g+1/e’

i

u."
(é‘sz’gn(u‘)

p',’ +o'u

YL —1L/E)

V(L=92)(E2+1/€2) + 292 — 1
2V AD(2/v) /T (1/v)

\/2-2VD(1/v) /T (3/v),

Residuals (4*24=96) : SGED
conditioned on seasons, weather
types & precipitation occurrence at
regional scale



SSTspl.dec

08

°

°

=

L mese

= MARGINAL DISTRIBUTION

covariable SST.spl.dec

TMS (°C)

|+1.2°C 1985-2022

aaaaa

deterministic stochastic

/‘/%

daily temperature = climatic trend + seasonal cycle + residuals

20 o

o obs ! sigleps) = 0.7

- - lowess

— mod harm
residus

Summer / Toowoallgoriyday

TMJnot (°C)

#,202°C/K SST.spl.dec (R2=0.28)

T T T T T T T
0.0 0.2 04 0.8 0.8 1.0 1.2

S5Tspldec

Climatic trend (1*4) : Sea
surface temperature covariate

Seasonal cycle (4) : gluing 2
sine functions

\

0.15

0.10

0.05

0.00

Summer - southern
— full {664)

Dry (396)
Wet (268)

Residuals (4*24=96) : SGED
conditioned on seasons, weather
types & precipitation occurrence at
regional scale



= CLIMATIC TREND - EXAMPLE
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= SGED FOR THE RESIDUALS - EXAMPLE
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= SIMULATION SCHEME
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Series of precipitation occurrence ? The observed ones
=> we only validate TEMPSIM

- Repeat the simulation of 1985-2022 many times



= SIMULATION SCHEME
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Series of weather types ? The observed ones
Series of precipitation occurrence ? The observed ones
=> we only validate TEMPSIM

- Repeat the simulation of 1985-2022 many times



= ANNUAL TEMPERATURE
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= ANNUAL TEMPERATURE
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= ANNUAL TEMPERATURE
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= LOCAL COLD AND HOTSPELLS
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= LOCAL COLD AND HOTSPELLS
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= SPATIAL EXTENSION OF COLD AND HOT DAYS
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= CHANGE IN THE SPATIAL EXTENSION OF COLD AND HOT DAYS

CDF
0.7

1.0

0.9

0.8

0.5 0.6

0.4

Spatial Cold spells

Spatial Hot spells

——  1986-2004 .
——  2005-2023 —s

1.00
1

1986-2004
2005-2023

CDF
092 094 096 098
] 1 1 1

0.90
|

0.88
1

T
0 20 40 60 80 100 0

% stations with concomitant T<=0

T
20 40 60 80 100

% stations with concomitant T>=q95

12



CDF
0.7

1.0

0.9

0.8

0.5 0.6

0.4

Spatial Cold spells

— 1986-2004
— 2005-2023

0 20 40 60 80

% stations with concomitant T<=0

T
100

CDF
0.94

0.98 1.00

0.96

0.90 0.92

0.88

L Resuts

= CHANGE IN THE SPATIAL EXTENSION OF COLD AND HOT DAYS
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= HYDROLOGICAL VALIDATION

RAINSIM+TEMPIM=HYDROLOGY : See the talk by P. Guillemin (Thursday morning)
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RAINSIM+TEMPIM=HYDROLOGY : See the talk by P. Guillemin (Thursday morning)
... but actually using the observed temperatures together with RAINSIM doesn’t change much !
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= HYDROLOGICAL VALIDATION

RAINSIM+TEMPIM=HYDROLOGY : See the talk by P. Guillemin (Thursday morning)
... but actually using the observed temperatures together with RAINSIM doesn’t change much !
True interest : for future climate
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= IN PROGRESS : FOR FUTURE CLIMATE
RAINSIM+TEMPIM=HYDROLOGY : See the talk by P. Guillemin (Thursday morning)

... but actually using the observed temperatures together with RAINSIM doesn’t change much !

True interest : for future climate
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Thank you.
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